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We provide decidability and undecidability results on thedel-checking problem for infinite tree
structures. These tree structures are built from sequafetsments of infinite relational structures.
More precisely, we deal with the tree iteration of a relatilostructure.# in the sense of Shelah-
Stupp. In contrast to classical results, where model-dhgcis shown decidable for MSO-logic,

we show decidability of the tree model-checking problemidgiics that allow only path quantifiers
and chain quantifiers (where chains are subsets of pathf)ep@ppear in branching time logics;
however, at the same time, the tree is enriched by the equel-telation (which holds between
verticesu, v if they are on the same tree level). We separate cleanlyekddgic from the logic used

for expressing properties of the underlying structufe We illustrate the scope of the decidability
results by showing that two slight extensions of the franméviead to undecidability. In particular,

this applies to the (stronger) tree iteration in the sendduathnik-Walukiewicz.

1 Introduction

A key result in the field of “infinite-state model-checking” is Rabin’s Treeditem [10]. It says that
the monadic second-order theory (short: MSO-theory) of the binagyigréecidable. Many decidability
results on theories of infinite structures have been obtained by a redtetRabin’s Tree Theorem. It
is also well-known that a slight extension of the signature of the binary teels e undecidability: The
expansion of the binary tree by the “equal-level relati&fias an undecidable monadic theory.

The situation changes when set quantification is restricted to “chains”,gte.that are linearly or-
dered by the partial tree ordering. It is known ([16]) that for the uelleh binary tree and also for any
regular binary tree, the chain logic theory of the tree is decidable in theqmeofE. This result is of
interest in verification since a large number of logical concepts that acgecifications of nontermi-
nating systems refer to computation paths and their subsets (i.e., to chaireafaple in branching
time logics. The second-order quantifiers in these applications do notoejéobal colorings of com-
putation trees (for which monadic logic would be invoked) but rather to tification over chains. The
equal-level relation adds the feature of synchronization to computatios.path

In recent years, a theory of words and trees over infinite alphabetgyed€8, 2, 4]) that opens
a way for generalizations. Here, a computation path is a sequence of tditesn from a relational
structure# = (M, Ry,...,R), which is infinite in general, rather than from a finite alphabeinstead
of the binary tree obtained from the words {,1}* built from the two element alphabg0,1}, the
infinitely branching infinite tree with vertices M* is considered.

There are two fundamental constructions of a tree structure built frotalphabet structure’#,
called “weak”, respectively “strong” tree iteration o, and denoted here7”, respectively.#*. For
A = (M,Ry,...,R), let

M= (M*,S=<R;,....R)
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2 Trees over Infinite Structures

whereS(u,v) holds ifv = umfor someu € M*, me M, < is the reflexive transitive closure &f and, for
(-ary R, we haveR(vi,...,V) iff for someze M*, vj = zm for j = 1,...,¢ such thatR(my,...,my)
holds in.#. This iteration is also called Shelah-Stupp iteration, going back 1d [13, 14].

The strong tree iteration7* is obtained from the weak one by adjoining the “clone predicate”

C={ummjue M* me M}

to the signature. It allows to connect two levels of the tree structure in a vaayuhfolding” becomes
definable.

As shown by Shelah and Stupp [13] 14], respectively Muchnik and kialicz (see the announce-
ment in [12] and the proof if [19]), the MSO-theory .of* and the MSO-theory af#* are decidable
if the MSO-theory of.Z is. In the present paper we show the decidability of the chain logic theory of
structures#¢, obtained by adjoining the equal level relatigrto .#*, under mild assumptions on the
structure.#. Our results extend work of Kuske and Lohréy [6] on structuv&® and of B2s [1] on
structures#¢. Furthermore, we show — in contrast to the Muchnik-Walukiewicz resul80-logic
—that a transfer of this decidability result to tree structuzgs is not possible.

Bés shows the decidability of the chain logic theory#f if the first-order theory of# is decidable.
Here we refine his result: We refer to any lodgi€ such that theZ-theory of.# is decidable, and we
consider arextensiorof the chain theory of#* in which further quantifications are allowed, namely
guantifiers of.Z restricted to the set of siblings of any element(Thus one allows quantifiers over
elementsy that areS-successors of any given elemexjt We call the corresponding theory tbkain
logic theory of 7 with £ on siblings We show that this theory is decidable if ti&-theory of.# is.

In our framework two logics play together: The logi¢ allows to express relations betwee#-
elements as they appear as sons of some given node of the tree, anbbgitaiim used to speak about
(sets of) tree elements arranged along paths. Referring to the stamdphicgl representation of trees,
# captures the horizontal dimension and chain logic the vertical dimension.eQevidl of signatures,
the predicatde of the tree signature refers to the horizontal while the successor andetie nelation
refer to the vertical aspect; finally, the signature 4f enters in the horizontal dimension, restricted to
the children of a tree node.

Standard examples of logic& are first-order logic FO, monadic second-order logic MSO and
its weak fragment WMSO, transitive closure logic TC, or extensions of F@dunting operators.
(In this paper we do not present a precise definition of the concept“lfgac” and just refer the
reader to[[5].) Standard examples of mode#s originate in arithmetic and analysis, e, +, <
,0),(R,+,<,0,1), (R, +,-,<,0,1) (whose first-order theory is decidable). In applications, one may
work with structures# that are direct products of finite transition graphs with infinite value strastur
such agR, +, <,0,1) or the real fieldR, +, -, <, 0,1).

The method to show the main result rests on a simple observation, first expio[&]: Consider
the tree with domaitM* whereM is ordered of order typey. A formula¢(X;...,X,) of chain logic —
with chainsc; as possible interpretations of tiie— can be viewed as a statement abautubles ofw-
words as follows. Any single chain is encoded by twao-words; the first is fronM® and describes the
(leftmost) full path of whichc; is a subset. The second is a 0-1-sequence describing by its entries 0 and
1 which elements of the path belongdo Now the obtained r2tuple of w-words overM, respectively
{0,1}, can be viewed as a singleword with alphabet letters frorfM x {0,1})". Using this translation
of n-tuples of chains of#Z* into w-words over(M x {0,1})", we obtain a translation of chain logic
formulas into MSO-formulas interpreted m-words, i.e., structures with domal. More precisely,
when.Z is the logic used for#, we obtain a formula of 27 -£-MSO”.
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This framework of 7-.#-MSO is in turn equivalent to Bchi automata (ovesw-words with entries
from (M x {0,1})"). We develop these#-.Z-Blichi automata as a preparation for the main result.
It turns out that these automata allow closure and decidability results in @@tiogy to the classical
theory over finite alphabets. As a consequence we obtain that the chaiyp tiezZf with . on siblings
is decidable if theZ-theory of # is.

While the setting of #-.#-Blichi automata is sufficient for the study of tree modef§, it has to
be extended to cope with strong tree iteratiosg where the clone predicate enters. We define “strong
A -%-Buchi automata” for this purpose. Here a remarkable difference obaivgeen the cases of an
input alphabeM (with infinite M) and an input alphab&" for n > 1. We give a brief explanation that in
the first case strongighi automata behave ag'-.#-Buchi automata (however using jugt = MSO),
whereas in the second case of input alphabétsvith n > 1, undecidability phenomena enter (in the
form that the emptiness problem becomes undecidable). Along this line wetshbthe chain theory
(and even the first-order theory) of¢ is undecidable if# is infinite — in fact already for the case that
A is the successor structure of the natural numbers.

A last result of the paper shows that the decidability result (on the chaimytioé .Z¢ with . on
siblings) also fails when quantification extends over an entire tree levelrdidin just siblings of a fixed
node. We obtain this for the weak tree iteration of the two element alpKa@bEf when the logicZ is
MSO.

The paper is structured as follows. In the subsequent section we dbkececessary terminology.
Sectior B develops the theory ofiéhi automata ovew-words whose letters aretuples from an infinite
structure.# and using a logicZ to specify properties of such letters.i¥’. In Sectio 4 we deduce
the decidability of the chain theory o with .# on siblings when theZ-theory of.# is decidable.
Sectiorlb gives the two mentioned undecidability results. We conclude with kemarfurther work.

2 Terminology

We consider relational structures with finite signature. Such a structuredsmted in the formay =
(M,Ry,...,Rk) whereR,; is of arity r; > 0. We focus on structures called “admissible”: In this case there
are two designated elements (usually called 0 and 1), represented by ghaaipredicateBy, P, that
belong to the tupléRy, ..., Rk). Then we can view bit sequences as special sequences/ver

For anw-word o € 2% (whereX may be infinite), writterr = a(0)a(1)..., we denote by (i, j] the
segmentr(i)...a(j).

We introduce two tree models built from a relational structufe The first is the weak tree iteration

‘%#:(M*7j7S)R*7"'7R;)

whereu < v :< uis a prefix ofv, Sis the successor relation containing all paiusum) with ue M* me
M, and for evenyR;, say of arity/, we haveR'(v1,...,V) iff there existz € M*, my,...m; € M such that
vij=zm for j=1,...myandR (my,...,my). (In [1] a variant of this definition is used, namely that there
existzy, ...,z € M* of same length anthy, ..., m, € M suchv; = zym; with Ri(my, ..., my).)

As mentioned in the introduction, the strong tree iterationvtfis the structure

%*:(M*vjusRiv"'aRﬁ7C)

where everything is as above fo## andC = {u m m| u € M*,me M}. The expansions of#Z*, .#*
by the equal level relatioE (with E(u,v) iff |u| = |v|) are denoted#, .4, respectively.
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If . is finite, we assume that each individual letterhdfis definable. The usual approach is to
introduce a constant in the signature.@f for each element of. In the present paper we stick to
relational structures and use a singleton prediatdor each elementn € M. So the binary alphabet
{0,1} is coded by the structure7, = ({0,1},Ro,Ry) with Ry = {0}, Ry = {1}. In the case of finite
structures# there is no essential difference betwegff and.#*, since the clone predicazbecomes
definable in#* by the equivalence

C(v) «» \/ (Bu(Ry(u) AS(u,v) ARL(V)).
meM

Let us introduce chain logic over the tree structurg€ and.#* built from .#. A path (through
the tree domairM*) is a maximal set linearly ordered by; it may be identified with arww-word in
M@, obtained as the common extension of all the wardsM* forming the path. A chain is a subset
of a path. So a singleton set M* is a chain, and we can easily simulate first-order quantification by
guantification over chains restricted to singletons. We call chain logic tigenirat of MSO logic in
which set quantification is restricted to chains.

Sometimes it is convenient to eliminate first-order variables and quantifieranis & (singleton)
chain quantifiers. This simplifies the setting since only one kndKy, ... of variables remains, ranging
over chains. In order to simulate first-order logic, the signature of tree Ismbds to be adapted. As
atomic formulas one uses

e Sing(X) for “X is a singleton”

e X C Xj with its standard meaning,

e SucdX;, X;) for “X; is a singleton{x; }, X; is a singleton(x; }, with §(x;, x;); similarly for X < X;.
The resulting formalism is called chaitogic; it has the same expressive power as chain logic.

For an admissible alphabbt (containing two identifiable elements 0,1) we encode a chais a
pair¢:= (a,B) € (M®)? where

e a encodes the path of whiahs a subset. As can be finite, we seat to be the pathng...m.000...

wherem is the lastc-element of whiclt is a subset; it can be interpreted as a sequence of “direc-
tions”. Note that for each elemewtin c it holds thatw is a prefix ofa.

e (3 codes membership inalong the pathw, i.e.,B(i) = 1iff a[0,i] € c.

Soifc= @, a is the path @ through the tred* andf also is the sequence that is constant 0.
The technical treatment below is simplified when viewingnetuple (a1, ..., a,) of w-words over
M as a singlev-word overM", theconvolutionof (az, ..., dn):

CY]_(O) al(l)
(ag,...,0n) ;= e (MM
an(0)| |an(1)

Similarly, we define theonvolution of a relation RE (M®)" of w-wordsto be thew-language
Lr:= {(al,...,an> ‘ (al,...,an) € R}

So then-tuples ofM-elements just considered will be used as letterevafiords and input letters
of Buchi automata. Transitions of automata will be specified in a ldgiby means oftZ-formulas
¢ (X1,...,X%). Each of these formulas defines a unary predigafeoverM™:

o7 ={(m,....,m) eM" | A |= p[my,...,my]}
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In general we considesw-models overM" for a signature that is given by a finite sétof .-
formulas: Given a tupléas,...,a,) of words over an alphabdfl and a finite setb of #-formulas
¢1,..., ¢« with nfree variables each, we define the structure

<ala cee an> = (N707 <3S (P¢)¢€¢)

with the usual interpretations of €, S (the latter for the successor relation), and the letter predicates
Py, ={i € N[ (aa(i),...,an(i)) € ¢j/f}. Thus,P, collects all letter positions ofay, . . ., an) which carry
a letter fromM" that shares the property describedghy

For thesew-models over#, equipped with predicatdé? defined in.Z’, we shall use a generalized
form of MSO-logic, where — as usual in-language theory — the first-order quantifiers range dvand
the monadic second-order quantifiers over sequences of letterdrgmaril). The system will be called
M -ZL-MSO.

For an.z-2-MSO-sentencg, where the predicaté? are introduced vigZ-formulaseg (x1, ..., %n)
with n free variables, we set

L(L»U) = {<al7 ce an> € (Mn)w ’ <C(1, ) an> ): QU}

as thew-language defined by. We say a relatiolR C (M®)" is .#-£-MSO definabléf there is a
A -2L-MSO sentencg with Lr = L(¢).

Later on, it will be convenient to refer to the component entries otvaword (a1, ...,an) in a
more readable way than via an index {1,...,n}. So, when a sequence variahés used for tha-th
component;, we shall writeY (s) to indicate the elemermt;(s) for s N.

Analogous definitions can be given for the case of finite words b\er

3 . #-%-Blchi Automata

In this section we introduce finite automata over words andords whose letters anetuples from

M which is the domain of a (in general infinite) relational structw#e Transitions of the automata
are defined in a logicZ. Mentioning both parameters (the structuzé and the logic?’), we speak

of .#-%-automata and#-.£-Bichi automata. In the first subsection we obtain, not surprisingly, an
equivalence between? -.£-automata and#-.£-MSO. In the second subsection we add some remarks
on an extended model (“strongiBhi automata”) that allows to capture the clone predicate between
successive letters.

3.1 The standard case

Let.# be a structure with domai. An .#-.#-Buchi automatorovern-tuples ofM-elements is of the
form
%= (QM", o, A F)

with a finite setQ of states, the input alphabkt”, the initial stategp € Q, the setF C Q of accepting
states and the finite transition relatiBnc Q x ®, x Q, where®,, is the set ofZ-formulas withn free
variables.

Let us define acceptance @fwords. Ifa = (a1, ..., ) is anw-word overM", arun of Z ona is
an infinite sequence of statps= p(0)p(1)... with p(0) = go such that for every > 0 there exists an
AM-ZL-formulad (xq,...,X,) and a transitiorip(i), ¢, p(i + 1)) satisfying

A= Plaa(i),...,an(i)]
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Arun p of Z ona is successfuf there exist infinitely many such thap(i) € F. We say that accepts
a if there exists a successful run &f on a. We denote by (%) the set ofw-words overM" accepted
by £.

Similarly, we define# -.£-automata for the case of finite words (as donéelin [1]). Languageptcte
by these automata will be denoted.&s-.#’-recognizable languages. We note some basic properties.

Lemma l

e The class of#7-.%-recognizable languages (of finite words) is closed under union, gtioje and
complementation.

e For an.Z-¥-recognizable language (of finite words)d(M")* and an.#-.#-Buchi recogniz-
able w-language KC (M")®, we have

1. U%is.#-.£-Buchi recognizable.
2. U-Kis.#-%-Bichirecognizable.

Proof The closure properties of7-.£-recognizable languages (of finite words) are shown by slight
adaptions of the classical case (where the alphabet is finite). Heregneerttrate on pointing out the
adaptions rather than the actual constructions. For example, an automatba projection fromM"

to M"~1 can easily be obtained by replacing the “lab@lxy, ..., x,) of a transition by3x,@ (xq,. .., Xn).

For the complementation, we follow the strategy of a determinization via a pawensstruction and
then simply swapping the seflsandQ\ F (as outlined in[[1]). The idea is as follows: Given a#-.¥
automaton# (on finite words),% does not necessarily provide a run (accepting or not accepting) for
every possible input letter iNM", i.e., there might be a letter that does not satisfy any of the formulas
of the transitions. For the construction of the complement automaton, one radt#iset of formulas

for the transitions such that each input word leads to a complete run, aitibadlly, one prepares
for determinism: Letp,..., ¢m be the formulas which occur in the transitions#&f For each subset

J C {1,...,m}, introduce the formulay; := Ajcs ¢i A Aigy —9i. Note that ford # K, there is no symbol
me M"with .# = Y3 A Yk [M], and for eactm, there is a sel such that# = ;[m]. Then we construct

%' by replacing each transitiaip, ¢i,q) € A by (p, ¥i,q) with W; = \/;5; ¢3. ThenL(#') = L(%), and

one can continue with the usual powerset construction.

Concerning the second part of the Lemma, for a givénZ’-recognizablé) C (M")*, the construc-
tion of an.Z-.£-Buchi automaton recognizind® can be done in a straightforward way by isolating
the initial state such that it has no incoming transitions and for each transitiondrstateg to some
state inF, adding a transition frong to the initial state over the same letter, where the initial state will
be the only final state in the new automaton. For the concatenadtiéh we again follow a well-known
idea by composing the two automata with additional transitions to cross ovepofrerto the other at the
appropriate positions. [ |

The basic decidability result ow7-.#-automata is the following. We state it for both kinds of
automata:

Proposition 2 If the Z-theory of # is decidable, then the nonemptiness problem 6+ -automata
on finite words as well as fow7-.Z-Buchi automata is decidable.

Proof For both kinds of 7-.Z-automata, we have to determine whether there exists a word which is
the label of a finite successful run. As a preparation, we have to deedach of the finitely many
transitions(p, ¢ (x1,...,%n),q) € A whether it is “useful”, i.e., whether there is an input lettes M"
satisfyingg. This is done by invoking decidability of th&’-theory of.#, namely by checking whether
M=Ky @ (X, .., %). Now one considers the directed graiih R) where(p,q) € Rif there is a
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useful transition fronp to q. For an.Z-.#-automaton over finite words, it remains to check whether in
(Q,R) there is a path frongg to F; for an.#-.#-Blichi automaton one verifies whether(iQ, R) there
is a path fronmp to a strongly connected component containing a state Fom [ |

We now show basic closure properties gf-.#-Biichi automata.

Lemma 3 If the Z-theory of # is decidable, the class o#-.£-Buchi-recognizablev-languages is
effectively closed under union, projection, and complementation.

Proof For union and projection the same construction as in Leiddma 1 works. We shetcbnstruction
for complementation, using the original approach GtBi [3].

Let B = (Q,M".qo,A,F) be an#-£-Buchi automaton. We introduce an equivalence relation over
finite M"-words such thafM")“\ L(2) is representable as a finite union of setsV® with .#-.Z-
recognizable setd,V C (M")*. By Lemmal, this suffices to showiBhi recognizability of(M™)® \
L(2A).

The desired equivalence relation is defined in termsasfsition profiles We write for a finite word
ue (MM*andp,qe Q:

e %:p->qifthereis a run onifrom pto qin 4,

e A:.p % g if there is a run onu from p to g in £ that visits an accepting state frdim

A transition profiler = tp(u) is then given by two setg, ), Jip() Of pairs of statedy,, containing
those pairgp,q) whereZ : p = q, andJy,,) containing those pair, q) where% : p % g. Two words

u,v are calledz-equivalent, writteru ~ 2 v, if tp(u) = tp(v). This equivalence relation is of finite index:
For this, note that each equivalence class (i.e., a languader a typert) is a Boolean combination of
the.#-.¢-recognizable languagék,g = {u| Z: p— g}, Upy={u| Z: p % q}, in fact, we have

Ur= (] UpN (] Upgn (] Upgn [ Upg:
(p.9)Elr (pa)¢le (P.9)EI (PA) ¢

Since the set of pairép,q) is finite, we get only finitely many equivalence classes. Moreover, by
Lemmd 1l and Propositidn 2, we can compute thdsevhich are nonempty and hence obtain an effective
presentation of the equivalence classes in terms of the correspondiagéitsl;, J;.

We identify the equivalence classes with the transition profiles and dendettbéthese transition
profiles of% by TPy.

The following “saturation property” is now immediate:

Lemma 4 For any ~ z-equivalence classes,M, thew-language UV is either contained in (%) or
in its complement.

It remains to show that any-word overM" belongs to some set-V® whereU,V are~ »-classes.
For this we use the transition profiles as “colors” of segmeritsj| for i, j € N. By Ramsey'’s Infinity
Lemma [11] there is for ang and any Eichi automatorZ a pair of transition profilesg, T from TPy
and an infinite set = {ip < i1 <i2 < ...} such that

tp(a(0,io—1]) = To, tp(alij,ij4+1—1]) =1 for j > 0.

This shows thatr € U, - U, whereUy,, U; denote the equivalence classes-of corresponding tap
resp.t. Let
NTPy = {(T0,7) € TP% | Ug, - U NL(2) = B}
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Again, by decidability of theZ-theory of #, this set is computable. Then

MOY\L(#) = |J Ul
(To,T)ENTP

As a consequence of Lemiina 1 and Lenfiina 3 we obtain the following result.

Proposition 5 If the .Z-theory of # is decidable, the inclusion problem and the equivalence problem
for .#-.%-Biichi recognizable languages are decidable.

After these preparations, one can easily infer an equivalence betwéeri-Buchi automata and
M -ZL-MSO.

Remark 6 Let #Z be an.#-£-Bichi automaton, then there exists afi-£-MSO sentencey with
L(#) =L(Y).

Again, the construction of aw7-.£-MSO formula describing a successful run of a givern.Z-
Buchi automatonZ is a straightforward adaption of the well-known pro6f ([17]). The onlydifioation
occurs in the formulas describing the transitions#iffor a transition(p, ¢,q), one uses the predicates
Py (x) as introduced above in the definition.of -.£-MSO.

Let us turn to the translation from” -.#-MSO sentences ta7 - -Biichi automata.

Proposition 7 Let ) be an.Z-£-MSO sentence, then there exists #ft.#-Buchi-automatornz with
L(y) =L(#).

Proof We first modify.#-.£-MSO to the expressively equivalent formalism #f-.#-MSOp-formulas
in complete analogy to the definition of chaiogic in Sectior 2. We proceed by induction over M$SO
formulas.

For the induction basis, we consider the atomic formias X;, SingX), SucgX;, X;), X = X,
and X; C Py, and specify.#-.Z-Blichi automata that recognize the setsusfvords defined by these
formulas. To exemplify, we give the automaton ¥rC Py, which checks that when theth component
is 1, the letter vector satisfies thg'-.Z-formula¢, which defines the letter prediceg.

’ $1(%) — (X1, .-, %n)

For the induction step, we consider the connectiveand -, as well as the existential quantifier
Here, we can exploit the closure properties 4t -Biichi automata from Lemnid 3, and employ the
constructions for the union, complementation, and projection, respectively [ |

As a relationR C (M®)" is representable by a convolution as @word overM", Remark 6 and
Propositiori Y yield the following result.

Theorem 8 A relation RC (M®)" with n > 1 of w-words is.#Z-.#-MSO definable iff it is# - #-Buchi-
recognizable. The transformation in both directions is effective.

As a consequence of thg'-.Z-Biichi theory, we obtain that satisfiability and equivalencezf.Z -
MSO-formulas over models frol“ are decidable if theZ-theory of the structure# is decidable.
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3.2 Strong.Z-%-Blchi automata

In the second part of this section, we extend — as far as possible — timigiees and results to a slightly
stronger model of Bchi automaton. While the iBhi automata above are appropriate for treating the
structures #¢, a stronger model is motivated by the study of strong tree iteratigfisin which the
clone predicate enters. Recall that it allows to single out those elemeis which are of the form

u m m Thus, when reading a “letterh along a path, we need to incorporate the feature to “remember”
whether this current input letten coincides with the previous one.

We define the notion oftrong.#-.%-Buchi automatorover n-tuple input letters (i.e., with input
alphabetM", M being the domain of#). The format is the same as for standaiiacBi automata over
M" as mentioned above, except for the transitions. For each statémpgjrthe possible transitions
are defined by a formulgpg(X1, ..., %n,Y1,...,Yn) — OF, in the special case of an initial transition, by a
formula@q,q(X1, . ..Xn). Starting with the latter case, the automaton can proceeddpcimq with input
letter (my, ..., my) if .Z = ¢[my,...,my]. For atransition of the first case, in which a previous input letter
exists and igmy ,...,m, ), the automaton can move froptto q if .# = @[my,...,my,m;,....my]. All
other notions are copied from the case of (standa#d)Z’-Biichi automata.

We can reprove the basic decidability and closure properties only uattermadical restrictions,
namely just for the logicZ = MSO and for the case of input letters fravh(rather tham-tuples of such
letters). We only give a rough outline; in the present paper we do ndf #mse automata to chain logic
over tree structures.

First let us state the basic decidability result.

Lemma 9 If the MSO-theory of# is decidable, the emptiness problem for stror3MSO-Bichi au-
tomata over M is decidable.

Proof The proof of this lemma can either be given directly, or by invoking the aipogetioned Muchnik-
Walukiewicz result ([12, 19]). It states — under the assumption that th@#h8ory of.# is decidable —
that the MSO-theory aof#* is decidable. The nonemptiness of a strorigld automaton oveyl can be
decided by checking existence of a suitable path throuh [ |

Lemma 10 If the MSO-theory of# is decidable, the class @b-languages recognized by strong -
MSO-Bichi automata over M is effectively closed under the Boolean operatiahslefimable projec-
tions p: M — M.

Proof This claim is shown in precise analogy to the case of stangérd”-Biichi automata (and we
skip here the repetition of proofs), except for the closure under congsie Here we describe the
necessary modifications.

The approach is the same as for the standard case, i.e.{lgld@'8original method involving finite
colorings and Ramsey’s Theorem. However, the coloring of a segmemofword over the alphabet
M", i.e., the transition profile, is defined differently. Given a strorigld automatonz, the “strong
transition profile” of the segmert|i, j| of an w-word a refers also to the last previous lette(i —

1) if i > 0. This extra context information is needed in order to capture the clomcpte on then
components ofr, and we define the transition profile of a segment relative to this contextiatamn
within a. So an appropriate notation for a strong transition profilgjsi, j]) rather thartp(u). Such
profiles, however, are of the same type as the previously defined pr@fdenely, presented as two sets
of pairs of states). The transition profile of a segmejit ] is fixed from the state pair®, q) that allow

a run of the automaton from to q (respectively, a run fronp to g via a final state), where in the first
move the letteor (i — 1) is used. (This condition is dropped for the case0.)
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There is, of course, a definite conceptual difference to the usualimglof segments in terms of
standard transition profiles: There, one may concatenate any sedqfesgggnents (for given transition
profiles) to obtain a new composed segment whose transition profile is ohdycthe given ones. In
the new setting, the composition of segmemtandv only works when the clone information on the
last letter ofu agrees with the first letter of. However, this does not affect the argument iicBi’s
complementation proof: Here we only need that for giwena one can obtain a sequenige< i < ...
such that all segmenisij,ij+1 — 1] share the same transition profile, and that for such a sequence,
the transition profiles ofr[0,ig — 1] and ofa[ig,i1 — 1] determinea either to be accepted of not to be
accepted by the #chi automaton.

Also the setdJ;, - U can be used as before when defined properly: Such a set is notexbtain
freely concatenating a segment Uy, and a sequence of segments from rather, it is the set

U, - U = {a | Fig,i1,... (0<ig<i1 <...Atpg[0,io—1] = ToAtpylij,ij+1—1 =1 for j=0,1,...)}

The effective presentation of the complement¢f7) is now completed as in the preceding subsection
for .4 --Buchi automata. [

In Section’b below we shall see that these results fail for the case of aitardiphabetM" with
infinite M andn > 1.

4 \Weak Tree Iterations

In this section, we want to show that for the weak tree iteration with equdlriehation, the chain theory
with . on siblings is decidable if th&’-theory of # is.

With the preparations of Sectigh 3, we will establish a reduction from chaia fognulas over tree
models to.#-#-MSO overw-sequences (and then t@éhi automata).

To avoid heavy notation, we employ chgiogic as introduced in Sectidn 2, and provide the follow-
ing construction. Recall that for a chainn .##, the objectc’is a pair of sequences ovir coding the
path underlying the chaig, respectively the membership of nodes of this patt in

Lemma 11 For any chain-formula¢ (Xy,...,%,) over .z = (M*,S <,R;i, ..., R, E) with . on sib-
lings, one can construct an?-.Z-MSO-formulag’ (Y1,Zs, ..., Ya, Z,) interpreted inw-words over M"
such that for all chains ..., c, we have:

if and only if (€1,...,6,) E @' (Y1,Z4,...,Yn, Zn).

Proof We proceed by induction over the structure of chdiormulas with.# on siblings overz{.

For the induction basis we have to consider the atomic formulas, namely ofrtheSiag X), X C
Xj, Xi = Xj, R (Xg,..., %), E(X;,X;), and also theZ-formulasy(x;,, . .., Xi,).

As a first example, we present the translation in#6.2-MSO-formulas for the formulg (X) =
Sing(X): Given the encoding = (a, B) of a chainc, the formulagg;,,(X) has to express thitindicates
membership irc exactly once. Thus, we obtai;,,(Y,Z) = 3s(Z(s) AVt (t £ s— —Z(9))).

For the case of anZ-formula y(x,,...,%,), we capturex,,...,x, by corresponding singletons
Xiy5- -+, X, and these in turn by pai¥i;,Z,), ..., (Y, Z,) consisting of a pathi, € M® and a singleton
setindicatoiz;, C {0,1}% each. We have to define a corresponding predieate ((M x {0,1})")* by
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an.Z-£-MSO-formula that expresses in terms of ¥ie Z;; that there is a commo&predecessa of
the elements;; and that the tuple;, , ..., x;, satisfiesy. In intuitive notation, we have

¢ ¢
¢p, (V1,21 Y, Zn) = /\ “(Yi;,Zi)) is singleton containing;,” A3z /\ “S(z,x;)" A Y(Xiy, -, Xi,)
j=1 j=1

In some more detail:

¢
N 08ing(Yi-Zi;) A3y ... 3%, 38(Zi; () A Y () = xi; A J\ Wt < s(Y;(t) = Y, (1) A Y(Xig, -5 %i,))
=1 i

The induction step then is straightforward, . #-.2-MSO is closed under the Boolean operations
and projection. [ |

Thus, we obtain a reduction of the chgitheory with.# on siblings of. #¢ to the.#-.#-MSO theory,
which with Theoreni B is decidable if the’-theory of.# is decidable. This leaves us to conclude this
section with the following theorem:

Theorem 12 If the .Z-theory of.# is decidable, the chain-theory o7 with . on siblings is decid-
able.

5 Undecidability Results

In the previous sections we showed decidability of the model-checkindgmndior chain logic withZ
on siblings over tree structureg{, given a structure# with decidableZ-theory for some logicZ.

The first result of this section shows that this does not extend to stromgterations #¢ (even if
we confine ourselves to first-order logic in place of chain logic).

The second result shows another limitation to decidability: In the “horizonta¢ision” of tree
models, we may (in Theoreml12) usé-quantifiers ranging over children of given nodes. We show that
for the caseZ = MSO we lose decidability when the horizontal quantification is extended totiae en
tree level. Here we get undecidability for the weak tree iteration.

For the first result we use a reduction to the termination problem of 2-comatehines (or 2-register
machines). Such a machiiis given by a finite sequence

linstn;...;k—1instg_q;k stop

where each instruction instis of the form
e Inc(Xy), Inc(Xz2) (increment the value ofy, respectivelyX; by 1), or

e DedX;), DeqXy) (similarly for decrement by 1, with the convention that a decrement of 0 is 0),
or

e If X; =0 goto/; else tol, (wherei = 1,2 and 1< /4, ¢, < k, with the natural interpretation).

An M-configuration is a triplg¢,m,n), indicating that the/-th instruction is to be executed and the
values ofXy, X, arem n, respectively. A terminating/l-computation (forM as above) is a sequence
(¢o,mo,No), - .., (4r,my,ny) Of M-configurations where in each step the update is done according to the
instructions inM and the last instruction is the stop-instruction (formally:= k). The termination
problem for 2-counter machines asks to decide, for any given 2tepmachineM, whether there exists
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a terminatingM-computation that starts witfi, 0,0) (abbreviated aM : (1,0,0) — stop). It is well-
known that the termination problem for 2-counter machines is undecida)e ([

We turn to the model-checking problem over structusg. We show undecidability when? is
the structure” := (N, Sug (whereSucis successor).

Theorem 13 The first-order theory of/¢ with FO on siblings is undecidable.

Proof For any 2-register machind we construct an first-order formul, with FO on siblings such
thatM : (1,0,0) — stop iff ¢ = ¢m.

The idea is to code a computatitfy, mo, No), . . ., (¢r, My, Ny ) by three finite paths of same length, one
for each of the three components. Each of these paths (namely (o, ..., ¢ ), m = (My,...,M), T =
(no,...,Nny)) is determined by its last point in the tree structurg, i.e., by a triplexg, X1, X2 of .#¢-
elements.

We use a formula which expresses

IxoIx1 I (E (X0, X1) A E(X1,X2) A [Xo, X1, X2 cOde a terminating computation bf]).

In order to obtain a formalization of the condition in squared brackets, we theexpress
1. the initial condition thatg starts with the son 1 of the root amg, 7% with the son 0 of the root,

2. the progress condition that for eagh< xg (giving an instruction number), the correspondivig
instruction is executed, which involves the vertgxand the verticeg; < X1,Y> < X2 on the same
level asyp and their respective successa§sz;, z» on 1o, 74, Th, respectively,

3. the termination condition thag is the numbek.

Accordingly, we can formalize the condition in squared brackets by a notiun of three formulas
b1, ¢2, 93 in the free variablegy, X1, X2, making use of the (definable) tree successor reld@ion

e The formulag, expresses (in first-order logic with FO on siblings) for the noof the tree model
and those thre8-successorgy, Y1, Y2, whereyg < Xo, Y1 =< X1, Y2 = Xo, thatyp is the number 1 and
y1, Y2 are the number O (of the modéf = (N, Suqg).

e The formulag; is of the form:

“for all yo < Xo, Y1 < X1, Y2 < X2 With E(yo,y1) andE(yo,Y2), there are tree-successors

20, 21, 2 (i.e., with S(yo,20), S(y1,21), S(y2,2) with 20 < X0, 1 < X1, 2 = Xp) that
represent the correct update of the configuratieny,y.).”

The condition on update is expressed by a disjunction over all programadtiens; we present,
as an example, the disjunction member for the statement (X})t

Yo is number 3 iNN, Sug — zy is number 4 inN, Sug
A z1 is the clone ofy1 A z, is theSuesuccessor of the clone .

Itis easy to formalize this in first-order logic with FO on siblings, similarly for thecbBnstructions
and the jump instructions.

e The formulag¢s expresses the third condition and is clearly formalizable in first-order logic w
FO on siblings. [ |
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Figure 1: Coding an element of a &by an element of an antichaf

This result can also be stated in the framework of strofighiBautomata (or even strong automata
on finite words) when the alphabet consists of pairs of natural numiétis.each 2-register machirié
one associates a strorg-MSO-automatom#, overN2 which accepts an input wolgng, no) . ... (m, ny)
if this represents the sequence of register values of a terminating computbkigrthe existence of an
appropriate sequence of instruction numbers (f{dm. ., k}) can be expressed by a blogk; . .. 3X, of
MSO-quantifiers. (In fact, weak MSO-quantifiers suffice.)

Let us turn to the second undecidability result. We shall confine ourstivibe simplest setting,
where the structure/ is just ({0,1},{0},{1}), i.e., . and.#¢ areboththe binary tree with equal
level relation (see also [18]).

Theorem 14 The chain theory of the binary tree with equal level relation and MSO onlé&eds is
undecidable.

Proof We use an idea of [9] that allows to code a tuple of finite sets of the binaryujree (and
excluding) levelL by a tuple of subsets of levklitself. In other words, we code a sub&aif tree nodes
before leveL by an “antichain”A which is a subset of the level(see Figuréll).

We simply map a vertex (before levell) to the unique vertex’ € L which belongs to/10* (i.e.,
belongs to the leftmost path from the right successer sée again Figuig 1). The map- V is injective
and definable in chain logic (even in FO-logic), given the ldveMoreover, it is easy to see that the
relations of being left or right successor in the tree are translated toefi@able relations over the level
L under consideration.

Using this coding, an existential quantifier over finite sets in the binary treapiied by an ex-
istential quantifier over subsets of an appropriate level of the tree (naofeylevel that is beyond all
maximal elements of the finite set under consideration).

Thus, the weak MSO-theory of the binary tree wilis interpretable in the FO-theory of the binary
tree({0,1}*, S, S, X, E) with E and with MSO restricted to levels.

Since the weak MSO-theory of the binary tree withs undecidable (see e.q. [15]), we obtain the
claim. |

6 Conclusion

In this work, we outlined a theory of generalizetddi automata over infinite alphabets. These alphabets
are represented by relational structurg§ the transitions being specified by formulas of a logit
over .#. In this setting of.Z-.Z-Bichi automata (which only slightly generalizes that[cf [1]), the
nonemptiness problem becomes decidable it#¢heory of # is. An extended model of strong/ -
Z-Buchi automata was introduced in which a transition viaZrnput may depend on the previoug
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input. Here an essential difference appears between the casesimghéretters are fronM and where
input letters are itM" for n > 1.

We applied this theory to show that the chain logic theory of the weak tree iteratfbof .# (with
% chosen as above) is decidable where the equal level relation is adjoireduantifications ofZ
over siblings of the tree model are allowed. On the other hand, we showedflimigisneralization. For
example, we showed undecidability for the corresponding theory of tbagstree iteration when the
underlying model is the successor structure of the natural numbers.

Several problems are raised by this study. Since the logics considardlhkave nonelementary
complexity, it may be interesting to set up fragments and “dialects” (e.qg. in texkpgics) of chain logic
where the complexity is better. Also, it seems that variants of the model ofgstBirchi-) automaton
should be studied in more depth, for instance by an integration with the théargtamata over “data
words” as developed in [8] 2] 4].
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