
Regularity Problems for Weak Pushdown
ω-Automata and Games

Extended Version (2012-09-03)

Christof Löding and Stefan Repke⋆

Lehrstuhl für Informatik 7, RWTH Aachen, Germany
{loeding,repke}@automata.rwth-aachen.de

Abstract We show that the regularity and equivalence problems are
decidable for deterministic weak pushdown ω-automata, giving a partial
answer to a question raised by Cohen and Gold in 1978. We prove the
decidability by a reduction to the corresponding problems for determinis-
tic pushdown automata on finite words. Furthermore, we consider the
problem of deciding for pushdown games whether a winning strategy
exists that can be implemented by a finite automaton. We show that
this problem is already undecidable for games defined by one-counter
automata or visibly pushdown automata with a safety condition.

1 Introduction

Finite automaton and pushdown automaton are two of the most fundamental
automaton models in computer science. Finite automata have good closure
and algorithmic properties. For example, language equivalence and inclusion
are decidable (see [9]), and for many subclasses of the regular languages it is
decidable whether a given automaton accepts a language inside this subclass (see
[17] for some results of this kind). In contrast to that, the situation for pushdown
automata is much more difficult. For nondeterministic pushdown automata many
problems like language equivalence and inclusion are undecidable (see [9]), and
it is also undecidable whether a given nondeterministic pushdown automaton
accepts a regular language. The class of languages accepted by deterministic
pushdown automata forms a strict subclass of the context-free languages. While
inclusion remains undecidable for this subclass, a deep result from [14] shows the
decidability of the equivalence problem. Furthermore, the regularity problem for
deterministic pushdown automata is also decidable [16, 18].

While automata on finite words are a very useful tool, some applications, in
particular verification by model checking (see [2]), require extensions of these
models to infinite words. Although the theory of finite automata on infinite words
(called ω-automata in the following) usually requires more complex constructions
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because of the more complex acceptance conditions, many of the good properties of
finite automata on finite words are preserved (see [11] for an overview). Pushdown
automata on infinite words (pushdown ω-automata) have been studied because
of their ability to model executions of non-terminating recursive programs. In
[7], efficient algorithms for checking emptiness of Büchi pushdown automata
are developed (a Büchi automaton accepts an infinite input word if it visits
an accepting state infinitely often during its run). Besides these results, the
algorithmic theory of pushdown ω-automata has not been investigated very much.
For example, in [6], the decidability of the regularity problem for deterministic
pushdown ω-automata has been posed as an open question and to our knowledge
no answer to this question is known. Furthermore, it is unknown whether the
equivalence of deterministic pushdown ω-automata is decidable.

Our first contribution addresses these questions. We prove the decidability of
the two problems (regularity and equivalence) for the subclass of deterministic
pushdown ω-automata with weak acceptance condition. Intuitively, an automaton
with weak acceptance condition only allows a bounded number of alternations
between accepting and rejecting states. This class of automata is capable of
expressing boolean combinations of reachability and safety conditions. Our proof
is based on a reduction to the corresponding questions for pushdown automata
on finite words in the spirit of the minimization algorithm for deterministic weak
ω-automata in [10].

We continue our investigations by considering the regularity problem in the
extended setting of pushdown games. A pushdown game is given by a pushdown
ω-automaton and a partition of the state space into states for Player 0 and
Player 1. In a play, the two players build up an infinite sequence of configura-
tions. The partition of the state space determines which player chooses the next
successor configuration. In case this automaton is deterministic, the sequences of
configurations and sequences of input letters are in one-to-one correspondence,
and Player 0 wins if the infinite input word is accepted by the automaton. In
this setting, a strategy for a player is a function that tells the player for a given
finite sequence of input letters (corresponding to the previous moves of the play)
which input letter to choose next (thereby determining the next configuration).
It is a winning strategy if each play in which the player follows the strategy is
winning for this player. For pushdown games with winning conditions like Büchi
condition, or more generally Muller or parity conditions, it is decidable which of
the players has a winning strategy, and it is known that such a strategy can be
computed by a pushdown automaton with output function reading the letters of
the play and outputting the next letter according to the strategy [19].

The regularity problem for pushdown games asks whether the player who has
a winning strategy also has one that can be computed by a finite automaton. For
example, the question studied in [13, 12], that asks whether for a given document
type definition (DTD) one can decide if it is possible to validate streaming XML
documents against this DTD with constant memory (by a finite automaton), can
be expressed as a regularity problem for a pushdown game with a safety winning
condition.
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We show that the regularity problem for pushdown games is already undecid-
able in very simple cases, namely for one-counter automata (pushdown automata
with a single stack symbol), and visibly pushdown automata (in which the type
of the stack operation is determined by the input letter [1]), both with safety
winning conditions. While this result does not transfer back to the constant
memory validation question for DTDs, it shows that the latter problem cannot
be solved by this more general approach.

The remainder of the paper is structured as follows. In Section 2, we give basic
definitions on automata and games. In Section 3, we show the decidability of the
regularity and equivalence problem for deterministic weak pushdown ω-automata
by a reduction to automata on finite words, and in Section 4 we present our
results on the regularity problem for pushdown games.

2 Preliminaries

The set of non-negative integers is N ∶= {0,1, . . .}. For a set S, we denote its
cardinality by ∣S∣. Let Σ be an alphabet, i.e., a finite set of symbols, then Σ∗

(Σω) is the set of (ω-)words over Σ, i.e., finite (countably infinite) sequences
of Σ symbols. The subsets of Σ∗ (Σω) are called (ω-)languages. For a word
w = a1 . . . an ∈ Σ∗, we define ∣w∣ = n ∈ N as its length and wR = an . . . a1 ∈ Σ∗ as
its reversal. The empty word ε is the word of length ∣ε∣ = 0. We assume the reader
to be familiar with regular languages, i.e., the languages specified by regular
expressions or equivalently by finite state automata. We are mainly concerned
with deterministic pushdown automata in this work.

Definition 1. A deterministic pushdown machine M = (Q,Σ,Γ, δ, q0,�) con-
sists of

– a finite state set Q, and initial state q0 ∈ Q,
– a finite input alphabet Σ (we abbreviate Σε = Σ ∪ {ε}),
– a finite stack alphabet Γ , and initial stack symbol � ∉ Γ (let Γ� = Γ ∪ {�}),
– a partial transition function δ ∶ Q×Γ� ×Σε → Q×Γ ∗

� such that for each p ∈ Q
and A ∈ Γ�:
● δ(p,A, a) is defined for all a ∈ Σ and δ(p,A, ε) is undefined, or the other

way round.
● For each transition δ(p,A, a) = (q,W ) with a ∈ Σε, the bottom symbol �

stays at the bottom of the stack and only there, i.e., W ∈ Γ ∗� if A = �,
and W ∈ Γ ∗ if A ≠ �.

The set of configurations ofM isQΓ ∗� where q0� is the initial configuration. For a
given input (ω-)word w ∈ Σ∗ (w ∈ Σω), a finite (infinite) sequence q0W0, q1W1, . . .
of configurations with q0W0 = q0� is a run of w on M if there are ai ∈ Σε with
w = a1a2 . . . and δ(qi,A, ai+1) = (qi+1, U) is such that Wi = AV and Wi+1 = UV
for some stack suffix V ∈ Γ ∗

� .
If the size ∣Γ ∣ of the stack alphabet is 1, then M is called a one counter

machine. If the size ∣Γ ∣ of the stack alphabet is 0, then M is called a finite state
machine, and we omit the components related to the stack from the notation of
the machine and the transitions.
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Automata and Languages. For finite words, we consider the model of a deter-
ministic pushdown automaton (DPDA) A = (M, F ) consisting of a deterministic
pushdown machine M = (Q,Σ,Γ, δ, q0,�) and a set of final states F ⊆ Q. It
accepts a word w ∈ Σ∗ if w induces a run ending in a final state. These words
form the language L∗(A) ⊆ Σ∗. For ω-words, we use the model of a deterministic
parity pushdown automaton (ω-DPDA) A = (M, τ) consisting of a deterministic
pushdown machine M as above and a function τ ∶ Q → N assigning colors to
the states of M. An infinite word α ∈ Σω is accepted if it induces an infinite run
such that the lowest color of the states occurring infinitely often is even. The
accepted ω-words form the ω-language Lω(A) ⊆ Σω. We call an ω-DPDA weak
if colors never increase during a run. When restricting the color set of a (weak)
ω-DPDA to {0,1} or {1,2}, we end up with Büchi (reachability) and coBüchi
(safety) acceptance, respectively.

To ensure that an infinite run reads an infinite word, we require that A
has no infinite sequence of ε-transitions. The presence of such sequences can
be tested, and they can be removed in polynomial time by redirecting some of
the ε-transitions into sink states. Under this assumption, for a finite word w,
we define δ∗(w) to be the last state qn of a run q0W0, . . . , qnWn on w such that
there is no further ε-transition possible.

All restrictions in the type of the underlying pushdown machine carry over to
the automata. Finite state (ω-)automata are denoted by (ω-)DFA. As usual, an
(ω-)language is called regular if it can be accepted by a (ω-)DFA.

Games and Strategies. A pushdown game (PDG) G = (M, τ,Q0) consists of
an ω-DPDA (M, τ) and a set Q0 ⊆ Q. A play is an ω-word α = a1a2 . . . ∈
Σω successively build up by two players. After the prefix a1 . . . ai, the next
action ai+1 ∈ Σ is chosen by Player 0 if δ∗(a1 . . . ai) ∈ Q0, otherwise Player 1
chooses (since M is total). Player 0 wins the play α iff it is accepted by the
ω-DPDA (M, τ). This can be considered as the game with the (possibly infinite)
configuration graph of M as arena. A strategy is a function f ∶ Σ∗ → Σ advising
to choose action f(w) after a finite play prefix w ∈ Σ∗. We call it winning for a
Player if he wins a play as long as he obeys to f no matter what his opponent does.
A game can be won by a player if he has a winning strategy. We are especially
interested in winning strategies representable by automata. A pushdown strategy
(PDS) F = (M′, σ) consists of a deterministic pushdown machine M′ and a
function σ ∶ Q′ → Σ advising actions according to the states ofM′. It defines the
strategy f(w) = σ(δ∗(w)).

Again, the definitions carry over for the restricted classes of finite state and
one counter machines. Finite state games and one counter games are denoted by
FSG and 1CG. In general, the winning player of a PDG has a winning pushdown
strategy [19], and the winner of an FSG has a winning finite state strategy (FSS)
[3].

A pushdown game that is useful in several places in this work is the so called
classification game associated to an ω-DPDA A and a set C of colors. The idea
in this game is that one player plays an infinite input word and the other player
plays an infinite sequence of colors from C. The configurations of the game
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mimic the run of A on the input word played. The player who is in charge of the
colors wins with an accepting color sequence iff the ω-DPDA accepts the input
word played. Since we are interested in weak automata, we consider the weak
classification game in which the player in charge of the colors is not allowed to
increase the colors during a play.

Definition 2. Let C ⊆ N be finite and A = (M, τ) with M = (Q,Σ,Γ, δ, q0,�)
be an ω-DPDA. We define the weak classification game GA,C = (M′, τ ′,Q′

0) with
M′ = (Q′,Σ′, Γ ′, δ′, q′0,�′) as follows:1

– Q′ = Q ×C × {0,1}, q′0 = (q0,max(C),0), and (q, i, x) ∈ Q′
0 iff x = 0,

– Σ′ = Σ ⊎C, Γ ′ = Γ , �′ = �,

– δ′((q, i,0),A, j) = ((q, j,1),A), where j ∈ {0, . . . , i},
δ′((q, i,1),A, ε) = ((p, i,1),W ), if δ(q,A, ε) = (p,W ), and otherwise

δ′((q, i,1),A, a) = ((p, i,0),W ), if δ(q,A, a) = (p,W ) for a ∈ Σ,

– τ ′((q, i, x)) = (τ(q) + i)

Note that the winning condition is a parity condition in general which is weak
iff A is weak. Since the second component in the vertices representing the color
from C can never increase, it remains fixed to some i from some point on in
every play. Then the original parity condition of A is evaluated shifted by this
fixed index i. If i is even, then Player 0 wins if the input word is accepted by
A. If i is odd, then Player 0 wins if the input word is rejected by A. Thus, the
acceptance status of the color sequence played by Player 0 has to correspond
to the acceptance status of the played input word. Therefore, if Player 0 has a
winning strategy in the game that can be implemented by some kind of machine
(pushdown or finite state), then this strategy can directly be transformed into a
weak automaton for Lω(A) by using the color output of the strategy as colors
for the acceptance condition.

A first application of this game is the observation that the computation power
of the automaton model (pushdown or finite state) and the expressiveness of the
acceptance condition are in some sense orthogonal. This statement can also be
derived from the proof of Theorem 24 in [15].

Lemma 3. Let A be a weak ω-DPDA such that Lω(A) is regular. Then there
exists a weak ω-DFA A′ with the same colors as A such that Lω(A′) = Lω(A).

Proof. Let A and L = Lω(A) be as above, and A′′ be an ω-DFA with Lω(A′′) = L.
Consider the weak classification game GA′′,C with C = τ(Q) being the colors of A.
Player 0 can easily win GA′′,C by a pushdown strategy simulating A, i.e., always
playing the colors according to A. Since A′′ is a finite automaton, GA′′,C is a
finite state game, and Player 0 also has a finite state strategy [3] which can be
used as a weak ω-DFA A′ with colors C such that Lω(A′) = L. ⊓⊔
1 For readability, we dropped the definition of a positive and negative sink state for

cases in which a wrong action is played, and the corresponding player has to lose.
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3 Regularity and Equivalence Testing for Weak ω-DPDA

In this section, we show how to decide the regularity and the equivalence problems
for weak ω-DPDAs. The equivalence problem asks for two given weak ω-DPDAs
whether they accept the same language, and the regularity problem asks for a
given weak ω-DPDA whether it accepts a regular ω-language. Both problems are
decidable in the case of DPDAs over finite words ([14] for equivalence and [16, 18]
for regularity). We show that the problems for weak ω-DPDAs can be reduced
to the case of finite words. Our technique is inspired by a normal form of weak
ω-DFA which assigns minimal colors to each state [10]. Then certain decision
problems for ω-DFA can be reduced to DFA on finite words. The same approach
for weak ω-DPDA faces the difficulty that minimal colors also depend on the
stack content. We overcome this by considering minimal colors for configurations
which yields a regular coloring. This also allows us to normalize weak ω-DPDA
such that we can apply known algorithms for finite words.

For the remainder of this section, let A = (M, τ) be a weak ω-DPDA with
M = (Q,Σ,Γ, δ, q0,�) and greatest color k = max (τ(Q)). W.l.o.g., we assume
k ≥ 1. The first important step is to define a language of finite words from the
ω-language of A by simply setting states with an accepting (even) color as final.

Definition 4. The finitary language L∗(A) ⊆ Σ∗ of A is the language of finite
words accepted by the DPDA (M, F ) with F = {q ∈ Q ∣ τ(q) is even}.

By L∗(AqW ) and Lω(AqW ), we denote the respective languages recognized by A
starting from configuration qW . The following observation is a direct consequence
of the definitions.

Remark 5. If L∗(AqW ) = L∗(ApV ), then Lω(AqW ) = Lω(ApV ).

If the inverse would also be true, then we would have established a strong relation
between the ω-language of a weak ω-DPDA and its language of finite words.
Unfortunately, this is not true in general, as illustrated by the following example.

Example 6. For n ∈N, consider the language Ln ⊆ Σω over alphabet Σ = {a, b, c}
defined as follows:

Ln = ⋃
x∈{a,b}

(x{a, b}∗x{a, b}ncΣω).

Obviously, Ln is a regular ω-language since it is defined by a regular expression.
Every ω-DFA recognizing Ln needs a state set of size at least exponential in n
because before reading the first c it has to remember the last n + 1 symbols. A
weak ω-DPDA with a state set of size linear in n and a stack alphabet of constant
size can recognize Ln by writing the string w ∈ {a, b} that occurs before the first
c onto the stack (using state q0). Afterwards, one can check the reversal wR of
w with linearly many states by counting to n + 1 (using the states q1, . . . , qn+1),
then moving to qa or qb depending on the letter on the stack, and comparing this
letter with the bottom letter on the stack (moving to q⊺ or q� to indicate the
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result of the comparison). To identify the bottom letter, it is stored as $a or $b
while the other letters are stored as #a or #b on the stack.

The full definition of the weak ω-DPDA An = ((Q,Σ,Γ, δ, q0,�), τ) is: Q =
{q0, . . . , qn+1, qa, qb, q⊺, q�}, Σ = {a, b, c}, Γ = {$a,$b,#a,#b}, and transitions as
follows (where A ∈ Γ�, x, y ∈ {a, b}, z ∈ Σ, i ∈ {1, . . . , n}):

– δ(q0,A, x) =
⎧⎪⎪⎨⎪⎪⎩

(q0,$xA) if A = �,
(q0,#xA) if A ≠ �,

– δ(q0,A, c) = (q1,A), δ(qi,#x, z) = (qi+1, ε), δ(qn+1,#x, z) = (qx, ε),

– δ(qx,#y, z) = (qx, ε), δ(qx,$y, z) =
⎧⎪⎪⎨⎪⎪⎩

(q⊺, ε) if x = y,
(q�, ε) if x ≠ y,

– δ(q⊺,A, z) = (q⊺,A), and for all other transitions: δ(q,A, z) = (q�,A),
and reachability coloring τ ∶ Q→ {0,1} (where i ∈ {1, . . . , n + 1}): τ(q⊺) = 0 and
τ(q0) = τ(qi) = τ(qa) = τ(qb) = τ(q�) = 1.

Then we have Lω(An) = Ln. To see that the inverse of Remark 5 does not
hold, note that in configurations with a state from {q1, . . . , qn+1, qa, qb}, it is
already clear whether the remaining word is accepted or not (this only depends
on the stack content). For example from configurations qaW$a� and qbV $b�, all
infinite words are accepted but the set of finite words accepted depends on the
height of the stack and is thus different if W and V are of different length.

Furthermore, L∗(An) is not regular because a finite word is only accepted if
it reaches q⊺, which requires as many letters after the first c as before the first c:

L∗(An) = ⋃
x∈{a,b}

(x{a, b}ix{a, b}ncΣ1+i+1+nΣ∗).

Our next goal is to normalize A such that the inverse of Remark 5 becomes true.
Therefore, we redefine the coloring of configurations (not simply states) based
on the sets Ki defined below. The intuition behind the definition is that each
configuration should be assigned the lowest color possible.

Definition 7. We partition the configurations of A into classes Ki for i ∈ N,
where Ki is the biggest subset of (QΓ ∗�) ∖ (⋃j<iKj) such that:

a) each run staying in Ki forever is accepting iff i is even, and
b) each run leaving Ki leaves it to ⋃j<iKj.

Example 8. The classes Ki for An from Example 6 are (where # = {#a,#b}):

K0 = (q⊺Γ ∗�) ∪ ⋃
x∈{a,b}

(qx#∗$xΓ ∗�) ∪ ⋃
x∈{a,b}
i∈{0,...,n}

(qn+1−i#i#x#∗$xΓ ∗�),

K1 = (QΓ ∗�) ∖K0, for i ≥ 2.

Note that K0 are exactly the configurations from where every word is accepted.
All other configurations belong to K1, like the ones with the bottom state
(q�Γ ∗� ⊆K1) but also the initial state (q0Γ

∗� ⊆K1). Further, some states occur
in both K0 and K1, like qa$a� ∈ K0 but qa$b� ∈ K1, or q1#a#

n$a� ∈ K0 but
q1#a#n$b� ∈K1.
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Definition 9. A is in normal form if colors correspond to classes, i.e., qW ∈
Kτ(q) for all qW ∈ QΓ ∗� that are reachable from the initial configuration.

Example 8 shows that An is not in normal form. However, the classes K0 and K1

are regular sets of words. This is true in general and can be used to transform A
into normal form.

Lemma 10. For A, one can compute in exponential time a weak ω-DPDA
A′ in normal form such that Lω(A′) = Lω(A), and a DPDA A′′ such that
L∗(A′′) = L∗(A′), where A′′ has O(∣Q∣) states and ∣Γ ∣⋅2O(∣Q∣⋅k) stack symbols.

Proof (Sketch). The core of the proof consists in constructing a deterministic finite
state machine that reads a reversed configuration and assigns the corresponding
class Ki to it. This can be achieved by considering the weak classification game
GA,C where C is the set of colors of A. Obviously, Player 0 has a winning strategy
(by simply playing the colors from the unique run on the input word played
by Player 1). From the definition of the Ki one can deduce that the smallest
i such that Player 0 wins from a position (qW, i,0) is such that qW ∈ Ki. The
set of configurations from which Player 0 has a winning strategy is regular and
can be accepted by an alternating automaton with a number of states linear
in the number of states of the pushdown machine defining GA,C [4, 8]. This
alternating automaton can be turned into a DFA of exponential size reading the
reversed configurations [5]. This DFA can then be simulated on the configurations
along a run of A by storing its states on the stack in parallel to the actual stack
symbols, which yields the normalized ω-DPDA A′. Therefore, the blowup of
the stack alphabet is exponential. The states of A′ only contain the additional
information on the class Ki the configuration is in. Finally, for the DPDA A′′,
this information is reduced to whether the class is even or odd, resulting in 2⋅∣Q∣
many states. Each step of the computation can be done in exponential time. ⊓⊔

The example illustrates that the deterministic automaton reading the configura-
tions in reverse has to be of exponential size in general. For weak ω-DPDA in
normal form, the inverse of Remark 5 is true.

Lemma 11. Let A be in normal form. If Lω(AqW ) = Lω(ApV ), then L∗(AqW ) =
L∗(ApV ).

Proof (Sketch). Using basic properties on the sets Ki, a simple argument shows
that if A is in normal form, then two configurations qW and pV with Lω(AqW ) =
Lω(ApV ) must have the same color, i.e., τ(q) = τ(p). From this, the statement
of the lemma easily follows. ⊓⊔

Remark 5 and Lemma 11 can be summarized as follows when considering the
special case of initial configurations of two weak ω-DPDA.

Corollary 12. Let A and A′ be weak ω-DPDA in normal form. L∗(A) = L∗(A′)
iff Lω(A) = Lω(A′).
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The next result is an immediate consequence since the equivalence problem for
DPDA is decidable [14].

Corollary 13. The equivalence problem for weak ω-DPDA is decidable.

We can also use Corollary 12 to reduce the regularity problem to the case of
finite words.

Theorem 14. Let A be in normal form. L∗(A) is regular iff Lω(A) is regular.

Proof. For the implication from finite to infinite words, suppose L∗(A) is regular,
i.e., L∗(A) = L∗(A′) for some DFA A′. Viewing A′ as a Büchi automaton
(assigning color 1 to rejecting and color 0 to accepting states), we obtain that
Lω(A) = Lω(A′) because A′ visits a state of color 0 after the same prefixes as A
visits a state with even color. Therefore, Lω(A) is regular (this also shows that
A′ is a weak ω-DFA for an appropriate coloring).

If Lω(A) is recognizable by an ω-DFA, then Lemma 3 shows that there is
even a weak such ω-DFA A′. We can assume that A′ is in normal form (using
our construction or the results in [10]). Applying Corollary 12, we obtain that
L∗(A) = L∗(A′) is regular. This shows the inverse implication. ⊓⊔

Our main result uses the fact that regularity for DPDA is decidable [16, 18].

Corollary 15. The regularity problem for weak ω-DPDA is decidable.

Complexity. Our method to decide regularity is composed of transforming weak
ω-DPDA into normal form and, applying the known regularity test for DPDA on
its finitary language. Finally, in case of a positive result, the DFA being equivalent
to the finitary language can be colored appropriately according to Theorem 14,
to yield a weak ω-DFA that recognizes the original ω-language.

Lemma 10 normalizes a given weak ω-DPDA A in exponential time, and
yields a DPDA A′′ that recognizes its finitary language, with O(∣Q∣) states and

∣Γ ∣⋅2O(∣Q∣2) stack symbols since we assume k ∈ O(∣Q∣). For the regularity test in
the second step, we refer to [18] which gives better complexity bounds than [16].
According to Valiant’s work, a DPDA that recognizes a regular language with
n states, t stack symbols, and words of at most length h in transitions, can be
transformed in doubly exponential time into an equivalent DFA with E2(n2 logn+
log t+logh) states, where Ei(f) = expi (O(f)) denotes an exponentiation tower of
height i. Both steps in composition run in triply exponential time. In case that the
ω-language is regular, it yields a DFA, the number of states of which is bounded
by E2(∣Q∣2 log ∣Q∣ + log ∣Γ ∣ + logh), and which can be colored appropriately to
yield a weak ω-DFA equivalent to A.

Hence, the regularity test for ω-languages presented here is more expensive
in terms of computation time than for languages of finite words. Nevertheless,
in case of a regular ω-language, the resulting weak ω-DFA has the exact same
bound on the number of states as for finite words. From Example 8, we see that
an exponential blowup for the resulting weak ω-DFA is unavoidable.
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4 Finite State Strategies for Pushdown Games

In this section, we are going to generalize the regularity problem to pushdown
games. Testing for regularity in this setting means to ask for the existence of
a winning finite state strategy. Let us first reconsider the weak classification
game from Definition 2 which connects ω-languages and games in the context
of regularity testing. We show that having a finite state representation for an
ω-language naturally extends to having a finite state winning strategies.

Lemma 16. Let A be a weak ω-DPDA with color set C. Lω(A) ⊆ Σω is regular
iff Player 0 can win the weak classification game GA,C with a finite state strategy.

Proof. Let A and C be as above. The ω-language Lω(A) is regular iff it is
recognized by a weak ω-DFA A′ with colors C according to Lemma 3. Such a
weak ω-DFA naturally corresponds to a winning FSS for Player 0 in GA,C . ⊓⊔

In the rest of this section, we study the decision problem whether Player 0 can
win a weak PDG with an FSS. We give a trivial answer in case of games with
reachability condition but a negative answer for safety condition.

Lemma 17. For a reachability PDG, Player 0 has a winning finite state strategy
if he can win.

Proof. Let G = (M, τ,Q0) be a weak PDG with M = (Q,Σ,Γ, δ, q0,�), colors
τ(Q) = {0, 1}, and f a winning strategy for Player 0. We consider all possible play
prefixes where Player 0 plays according to f until a state of color 0 is reached.
Such a state exists on each play since f is winning for Player 0. When we arrange
these play prefixes as a tree, then it is a finitely branching tree in which each
branch is finite. According to König’s Lemma, the tree must be finite. Using the
nodes of this tree as states of a finite automaton yields a finite state winning
strategy. ⊓⊔

Lemma 17 implies the following since PDGs are effectively determined [19].

Corollary 18. For a reachability PDG, it is decidable whether Player 0 has a
winning finite state strategy.

This problem is not symmetric, meaning that it is undecidable from the perspec-
tive of Player 1, which is about having a winning FSS for a safety condition. To
this end, we encode the run of a 2-register machine (2RM) as a pushdown game.
A 2RM can be seen as an input-free deterministic machine that is equipped with
2 counters which can be increased, decreased and tested for zero. The halting
problem is undecidable for this machine model as it can encode Turing machines.
For our next proof, we consider a similar problem which is to decide whether the
unique run of a 2RM is ultimately periodic (UP), i.e., whether the state sequence
starting from the initial configuration forms an infinite word uvω where u, v are
nonempty finite state sequences.

Lemma 19. It is undecidable whether the run of a 2RM is ultimately periodic.
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Theorem 20. For a safety 1CG, it is undecidable whether Player 0 has a winning
finite state strategy.

Proof (Sketch). We use Lemma 19 and construct for a given 2RM M a safety
1CG G such that Player 0 can win with an FSS iff M has a UP run. The main
idea of G is divided into two phases. First, Player 1 increases and decreases the
counter to an arbitrary value. Whether at this point the value is zero or not
determines which register of M will be simulated by the counter of G in the
second phase. There Player 0 has to play an infinite transition sequence of M
that is correct just according to the simulated register. Thus, a play is won by
Player 0 iff Player 1 never leaves the first phase, or the second phase is reached
and Player 0 can give an infinite run of M which simulates the according register
correctly. This can be modeled by a safety winning condition where only an
incorrect simulation in the second phase leads to an unsafe state.

Obviously, Player 0 has a winning strategy. But here we are interested in a
winning FSS for Player 0. If he has a winning FSS f , then its limited memory
cannot remember after the first phase whether the counter is zero or not, i.e.,
which register will be simulated by G in the second phase. But independent from
that information, f is winning in the second phase and hence the transition
sequence that f produces must be correct in both cases. This means that the
sequence is indeed the unique run of M , and since it can be represented by the
FSS f , it must be UP. For the inverse, assume that the run of M is UP. Then it
can be represented by a finite state machine. Hence, a winning FSS for Player 0
is to ignore the first phase and to play in the second phase the run of M which
is correct with respect to both registers. ⊓⊔

The undecidability of that problem can be shown in a similar way for visibly
PDG, i.e., where the type of the stack operation is determined by the input
symbol played in the game [1]. Due to this new restriction, the construction needs
additional stack symbols to make an FSS of Player 0 not see what is happening
on the stack.

Theorem 21. For a safety visibly PDG, it is undecidable whether Player 0 has
a winning finite state strategy.

5 Conclusions

In Section 3, we considered weak pushdown ω-automata. We established a normal
form that each weak pushdown ω-automaton can be effectively converted to, and
revealed its close relation to languages of finite words. This allowed us to lift
known decision procedures for equivalence [14] and regularity [18] from the case
of finite words to ω-automata. Our regularity test can be performed in triply
exponential time. The worst case size of an equivalent ω-DFA is between singly
and doubly exponential. Especially the upper bound for ω-languages coincides
with the one given by Valiant [18] for languages of finite words. He further gave
singly exponential bounds for some restricted types of pushdown automata (like
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ε-free, 1-counter). It is open whether they can be used to improve the test on
respective types of ω-automata. Finally, the decidability of the regularity problem
for (non-weak) pushdown ω-automata, as formulated in [6], remains open.

We dedicated Section 4 to an extension of the regularity problem for pushdown
games, which asks for the existence of a finite state winning strategy. Beside
a simple decidability result in the case of reachability winning conditions, we
showed in the main result of that section the undecidability for safety conditions.
The latter result extends to more complicated winning conditions of course. The
decidability remains open in the case of visibly one-counter games.

Acknowledgements. With thanks to Wladimir Fridman for fruitful discussions.
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Appendix

A Proofs from Section 1

We justify the claim that the problem studied in [13, 12] can be expressed as a
regularity problem for pushdown games.

We first introduce some terminology concerning the problem from [13, 12]. A
DTD is basically a context-free grammar that does not distinguish terminal and
non-terminal symbols and that can use regular expressions on the right hand
side of the word. Derivation trees are defined in the standard way. A symbol a
can be at a leaf if the language defined by the regular expression on the right
hand side of the rule for the symbol contains the empty word.

For example, the rules r → a∗, a→ b and b→ ε generate all (unranked) trees
with r at the root. Below r there is a finite sequence of a (maybe empty, then
the root is the only node), and below each a there is one b.

The linearization of such a derivation tree t is a string lin(t) defined as follows.
If the symbol at the root is a and below that there are the subtrees t1, . . . , tn,
then

lin(t) = a ⋅ lin(t1) . . . lin(tn) ⋅ ā.

The question studied in [13, 12] is the following: Given a DTD D, can the set of
linearizations of its derivation trees be accepted by a finite automaton, provided
that only correct linearizations are given to this automaton.

In other words, if Lin is the set of all linearizations (for the alphabet of
the DTD D), and lin(D) is the set of all linearizations of derivation trees
of D, then the question is whether there is a finite automaton A such that
L(A) ∩Lin = lin(D).

This problem can be restated as a regularity problem for a safety pushdown
game as follows. We can build a DPDA over the alphabet for linearizations that
recognizes lin(D). Now, we add the symbols #, Y,N to the alphabet. The idea
is that Player 1 plays symbols from the alphabet for linearizations, and at some
point #. After #, Player 0 has to play Y (Yes) or N (No) to declare that the
word played by Player 1 is in lin(D) or not. However, Player 0 only needs to
make this decision in the case that Player 1 played a correct linearization (this
can be encoded in the pushdown game). The game is made such that a wrong
decision of Player 0 leads to a state that is losing (color 1). All other states have
color 2.

Now, it is not difficult to see that Player 0 has a finite state strategy in this
game if, and only if, a finite automaton A exists with the required property.

Indeed, a finite state strategy for Player 0 can be used as A, and vice versa
A can be used to define a finite state strategy.



14 Christof Löding and Stefan Repke

B Proofs from Section 2

We show how to detect and remove infinite sequences of ε-transitions for an
ω-DPDA A.

First, note that in each such infinite sequence there is a configuration qAW
such that the top symbol A is never popped again during this sequence. This
implies that from each configuration with state q and top stack symbol A there
is an infinite sequence of ε-transitions. It is therefore enough to detect such pairs
of q and A, which we call diverging pairs.

We find these pairs using existing algorithms for pushdown systems. Let Aε
denote the modification of A in which all non-ε-transitions are deleted.

Let q ∈ Q and A ∈ Γ�. If A /= �, we compute a nondeterministic finite automaton
(NFA) for the set Pq,A = post∗Aε

(qA�) of configurations reachable from qA� in
Aε. If A = �, we compute an NFA for Pq,A = post∗Aε

(q�). These NFAs can be
computed in polynomial time [7].

The pair q,A is diverging if the following conditions are satisfied:

– If A /= �, then no configuration of the form p� is in Pq,A (otherwise A is
popped during the unique ε-sequence).

– There is no configuration pBW ∈ Pq,A such that for p and B no outgoing
ε-transitions is defined (the sequence of ε-transitions stops).

These conditions can be tested in polynomial time by some simple membership
tests on the NFAs.

To remove the infinite ε-sequences from A, it is enough to redirect the
transitions for the detected diverging pairs into a new rejecting sink state looping
on every input letter (we are interested in infinite words and an infinite sequence
of ε-transitions cannot result in an accepted infinite word).

C Proofs from Section 3

For the remainder of this section, let A = (M, τ) be a weak ω-DPDA with
M = (Q,Σ,Γ, δ, q0,�) and greatest color k = max (τ(Q)). W.l.o.g., we assume
k ≥ 1. We start with a lemma stating some useful properties of the sets Ki from
Definition 7.

Lemma 22. Properties of Ki:

a) For each configuration in Ki, there is a run which stays in Ki forever.
b) For each configuration in Ki with i ≥ 2, there is a run leading to Ki−1.
c) If qW ∈Ki, then τ(q) ≥ i.

Proof.

a) Assume contrary that there is a configuration qW ∈Ki such that each run
is eventually leaving it. Then qW and its subsequent configurations in Ki

are in Kj where j < i is the biggest index of a class Kj a path from qW is
leading to. This contradicts that qW is in at most one class.
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b) Assume contrary that there is a configuration qW ∈ Ki with i ≥ 2 being
minimal such that no run is leading to Ki−1. Then qW and its subsequent
configurations in Ki belong to Ki−2 as Definition 7(a) and (b) are still fulfilled,
which again contradicts that qW is in at most one class. Hence, no run from
qW is leaving Ki. In this case, qW and its subsequent configurations belong
to Kj where j = i mod 2 < 2 contrary to the assumption.

c) Assume contrary that there is a configuration qW ∈ Ki with τ(q) < i and
choose it such that τ(q) + i is minimal. If τ(q) + i is odd (meaning that τ(q)
is odd iff i is even), then pick an infinite run starting from qW staying in
Ki according to (a). By Definition 7 (a), this run has to stabilize at a color
with different parity than τ(q) and hence smaller than τ(q). Let q′W ′ ∈Ki

be a configuration on the run such that τ(q′) < τ(q) < i. This contradicts the
minimality of τ(q) + i.
If τ(q) + i is even, we get τ(q) < i − 1 and i ≥ 2. A run leading from qW ∈Ki

to q′W ′ ∈Ki−1 is guaranteed by (b) such that τ(q′) ≤ τ(q) < i − 1. Again, we
get a contradiction to the minimality of τ(q) + i. ⊓⊔

The next lemma states that we can construct a deterministic finite state machine
(DFSM) that reads a reversed configuration and assigns the corresponding class
Ki to it.

Lemma 23. One can generate a DFSM MK = (QK ,ΣK , δK , qK0 ) with alphabet
ΣK = Γ�, and a function fK ∶ Q × QK → N assigning the classes: for each
configuration qW ∈ Ki iff fK(q, δK∗ (WR)) = i. This computation takes time

2O(∣Q∣⋅k) and yields size ∣QK ∣ ∈ 2O(∣Q∣⋅k).

Proof. We show this lemma by using the weak classification game GA,C from
Definition 2, where the colors C = {0, . . . , k} suffice according to Lemma 22 (c).
As this game naturally represents Definition 7, it has the property that Player 0
can win from a configuration (q, i,0)W iff qW ∈Kj with j ≤ i, as we explain in
the following.

An obvious winning strategy for Player 0 from such a configuration is to just
play the corresponding index j such that pV ∈Kj for each game configuration
(p, i,0)V .

For showing the inverse, assume contrary that Player 0 wins from a configu-
ration (q, i,0)W with qW ∈ Kj such that i < j for minimal i + j. If i + j is odd,
then Player 1 can force a play that stays in Wj due to Lemma 22 (a). To win,
Player 0 has to stabilize at a color i′ < i that is even iff j is even, i.e., i′ + j is
even. Hence, i′ < j which contradicts the minimality. If i+ j is even, then i < j − 1
and j ≥ 2. Hence, Player 1 can force the play to a configuration (q′, i′, 0)W ′ with
q′W ′ ∈ Kj−1 due to Lemma 22 (b). By assumption, Player 0 can still win from
there which contradicts the minimality since i′ + j − 1 ≤ i + j − 1 < i + j.

Since A is weak, the winning condition of GA,D is also a weak parity condition.
This can be rewritten as a Büchi condition redefining odd colors as 1 and even
colors as 0. From [4], we know that the winning region for Player 0 in such a
Büchi pushdown game is a regular set of configurations. To generate MK with
exponential size, we use an algorithm given in [8]. Based on GA,C which has
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O(∣Q∣⋅k) many states, it yields a so called alternating multi-automaton A′. It is
an alternating automaton having the same states as GA,C (plus two extra states),
with the property that it has an accepting run from (q, i, x) for a word W ∈ Γ ∗�
iff Player 0 can win from (q, i, x)W in GA,C . Formally, A′ = (Q′,Σ′,∆′, F ′) is an
alternating automaton with

a) states Q′ ⊇ Q ×C × {0,1} of size ∣Q′∣ ∈ O(∣Q∣⋅k), final states F ′ ⊆ Q′,
b) input alphabet Σ′ = Γ�, and

c) transition relation ∆′ ⊆ Q′ ×Σ′ × 2Q
′

.

To define the acceptance, let q′
εÐ→ {q′}, and q′

AWÐÐ→ Q′
1 ∪ . . . ∪ Q′

n iff q′
AÐ→

{q′1, . . . , q′n} and q′i
WÐ→ Q′

i. In this setting, no designated initial states are needed
because we want to ask whether a run starting from (q, i, x) ∈ Q′ is accepted.
Then the language accepted by A′ is

L∗(A′) = {(q, i, x)W ∈ (Q×C×{0,1})Γ ∗� ∣ (q, i, x) WÐ→ P ′ for some P ′ ⊆ F ′}.

A DFA for the reversal language L∗(A′)R of an alternating automaton A′ can
be obtained by a reversal powerset construction [5]. In the following, we provide
such a construction on A′ to obtain the desired DFSM MK with an exponential
blowup. Let MK = (QK ,ΣK , δK , qK0 ) be a DFSM with

a) states QK = 2Q
′

, initial state qK0 = F ′,
b) input alphabet ΣK = Σ′ = Γ�, and
c) transition function δK ∶ QK ×ΣK → QK where

δK(P ′,A) = {q′ ∈ Q′ ∣ (q′,A,P ′′) ∈∆ for some P ′′ ⊆ P ′}.

By construction, we have that (q, i, x) ∈ δK∗ (WR) iff (q, i, x) WÐ→ P ′ for some
P ′ ⊆ F ′ iff (q, i, x)W ∈ L∗(A′) iff Player 0 can win from (q, i, x)W iff qW ∈Kj for
some j ≤ i. It remains to define the function fK ∶ Q×QK →N as the minimal such
i: fK(q,P ′) = min{i ∣ (q, i,0) ∈ P ′}. Hence, fK(q, δK∗ (WR)) = i iff qW ∈Ki. ⊓⊔

Based on this, we can now prove Lemma 10.

Lemma 10. For A, one can compute in exponential time a weak ω-DPDA
A′ in normal form such that Lω(A′) = Lω(A), and a DPDA A′′ such that
L∗(A′′) = L∗(A′), where A′′ has O(∣Q∣) states and ∣Γ ∣⋅2O(∣Q∣⋅k) stack symbols.

Proof. Let MK = (QK ,ΣK =Γ�, δK , qK0 ) be a DFSM with function fK ac-
cording to Lemma 23. We define a weak ω-DPDA A′ = (M′, τ ′) with M′ =
(Q′,Σ,Γ ′, δ′, q′0,�′) and coloring τ ′ ∶ Q′ → N in such a way that it runs like A
and annotates the stack with a simulation of MK to use the information about
the classes. The construction goes as follows:



Regularity Problems for Weak Pushdown ω-Automata and Games 17

a) states Q′ = Q×{0, . . . , k}, q′0 = (q0, c) where c = fK(δK(qK0 ,�)), i.e., q0� ∈Kc,

b) stack symbols Γ ′ = Γ ×QK , �′ = (�, qK0 ),
c) transitions δ′((q, c), (A,pK0 ), a) = ((p, d),A′

n
. . .A′

1) where
i) δ(q,A, a) = (p,An . . .A1),

ii) A′
i = (Ai, pKi−1) and pKi = δK(pKi−1,Ai) for i ∈ {1, . . . , n},

iii) d = fK(p, pKn ),
d) coloring τ ′((q, i)) = i.

This construction maps a configuration qAn . . .A1 in A to an annotated configu-
ration (q, i)A′

n
. . .A′

1 in A′ where i = fK(q, δK∗ (A1
. . .An)), i.e., qAn . . .A1 ∈ Ki

and A′
i = (Ai, δK∗ (A1

. . .Ai−1)). Hence, a bijection between the configurations of
A and properly annotated configurations of A′ is established. From Definition 7
(a), we get Lω(A′) = Lω(A) because the colors in A′ are set according to the
classes Ki in A. From Definition 7 (b) follows that A′ is weak and the claim on
the complexity follows from the construction and Lemma 23.

It remains to show thatA′ is in normal form. We claim that (q, i)A′
n
. . .A′

1 ∈Ki

in A′ iff qAn . . .A1 ∈ Ki in A, i.e., that the classes in A′ did not change in
comparison to A. Assume that the correspondence of the classes is already
established for K0, . . . ,Ki−1. Now consider Ki and the case that i is even (the
other case is similar). Ki contains precisely those configurations from which
all infinite runs are either accepting or are leading to Kj with j < i. Since the
correspondence of the classes has been established up to i − 1, we know that for
every run from (q, i)A′

n
. . .A′

1 that leads to Kj for j < i in A′, the corresponding
run from qAn . . .A1 also leads to Kj in A, and vice versa. Furthermore, if
all infinite runs from (q, i)A′

n
. . .A′

1 that do not lead to a smaller class are
accepting, the same must be true for qAn . . .A1 (and vice versa) because from
both configurations the same language is accepted. Hence, the classes Ki in the
two automata also coincide and A′ is in normal form.

To obtain the DPDA A′′, we relax the additional information attached to the
states of A′. This information only indicates the class Ki the configuration is in,
whereas it has no influence on the transitions of A′. For the finitary language, it
is enough to know whether the color is even or odd, which is where we can reduce
the information to, resulting in 2⋅∣Q∣ many states. Each step of the computation
can be done in at most exponential time. ⊓⊔

The proof of Lemma 11 is based on the following lemma.

Lemma 24. Let A be in normal form. If Lω(AqW ) = Lω(ApV ), then τ(q) =
τ(p).

Proof. Assume contrary that for some configurations Lω(AqW ) = Lω(ApV ) but
τ(q) < τ(p) and choose the configurations such that τ(q) + τ(p) is minimal.
We consider two cases that lead to a contradiction. If τ(q) + τ(p) is odd, then
Lemma 22 (a) yields an ω-word α such that from pV only color τ(p) is visited.
The run of α from qW has the same acceptance and hence, due to the weakness
it stabilizes at a color smaller than τ(q). Let q′W ′ and p′V ′ be configurations on
the run on a prefix w of α from qW and pV , respectively, such that τ(q′) < τ(q)
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and τ(p′) = τ(p). Since Lω(Aq′W ′) = Lω(Ap′V ′), we have a contradiction to the
minimality of τ(q) + τ(p).

Otherwise, τ(q) + τ(p) is even which implies τ(q) < τ(p) − 1 and τ(p) ≥ 2.
Lemma 22 (b) guarantees that there is a word w leading from pV to p′V ′ with
color τ(p′) = τ(p) − 1. Let q′W ′ be the configuration reached by w from qW ,
then τ(q′) ≤ τ(q) < τ(p) = τ(p′). Again Lω(Aq′W ′) = Lω(Ap′V ′), and we have a
contradiction to the minimality of τ(q) + τ(p). ⊓⊔

Based on this, the proof of Lemma 11 is straight forward.

Lemma 11. Let A be in normal form. If Lω(AqW ) = Lω(ApV ), then L∗(AqW ) =
L∗(ApV ).

Proof. Assume contrary that w.l.o.g. there is a word w ∈ L∗(AqW ) ∖ L∗(ApV ).
Hence τ(q′) ≠ τ(p′) for the configurations q′W ′, and p′V ′, reached by w from
qW , and pV , respectively. Lemma 24 then yields Lω(Aq′W ′) ≠ Lω(Ap′V ′) which
implies Lω(AqW ) ≠ Lω(ApV ). ⊓⊔

D Proofs from Section 4

Before proving Lemma 19 and Theorem 20, we formalize the concept of a 2-register
machine. A 2RM M = (Q, δ, q0, F ) consists of

a) a finite state set Q, initial state q0, final states F ⊆ Q, and
b) an input-free deterministic transition function δ ∶ Q×{0, 1}2 → Q×{−1, 0,+1}2.

The configurations of M is the set Q ×N2, and δ leads from a configuration
(p,n0, n1) to another (q, n0 + d0, n1 + d1) iff δ(p, sgn(n0), sgn(n1)) = (q, d0, d1),
i.e., depending on the current state and whether the registers are zero it leads
to another state and increases or decreases the registers. W.l.o.g., we assume
that ni + di ∈ N for all i ∈ {0,1}. The halting problem is undecidable for this
machine model as it can encode Turing machines. For the proof of Theorem 20,
we consider a similar problem that is to decide whether the unique run of a 2RM
is ultimately periodic (UP), i.e., whether the state sequence starting from (q0, 0, 0)
forms an infinite word uvω where u, v are nonempty finite state sequences.

Lemma 19. It is undecidable whether the run of a 2RM is ultimately periodic.

Proof. Due to the computational power of 2RMs, there are some with a non-UP
run. We show the lemma by a reduction of the halting problem. To this end, we
transform a given 2RM M into two different instances M0,M1 of the considered
problem. Both these machines first simulate M until it reaches a halting state.
Then M0 continues with some computation that has a UP run, whereas M1

continues with one not being UP. Thus, by construction, the property of having
a UP run differs for M0,M1 if and only if M reaches a halting state. ⊓⊔
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Theorem 20. For a safety 1CG, it is undecidable whether Player 0 has a
winning finite state strategy.

Proof. We will use Lemma 19 and construct for a given 2RM M a safety 1CG G
such that Player 0 can win with an FSS iff M has a UP run. The main idea of G
is divided into two phases. First, Player 1 increases and decreases the counter to
an arbitrary value. Which register of M will be simulated by the counter of G
in the second phase is determined by whether or not the value of the counter is
zero now. Then in the second phase, Player 0 has to play an infinite transition
sequence of M that is correct just according to the simulated register. Thus, a
play is won by Player 0 iff Player 1 never leaves the first phase or the second
phase is reached and Player 0 can give an infinite run of M which simulates the
according register correctly. This can be realized by a safety winning condition
where an incorrect simulation in the second phase leads to an unsafe state.

Formally, we define for a given 2RM M = (QM , δM , qM0 , FM) the weak 1CG
G = ((Q,Σ,Γ, δ, q0,�), τ,Q0) with

a) states Q = Q0 ∪Q1 where Q0 = {q�} ∪QM×{0,1} (state (q, i) indicates that
M is in state q and register i is simulated) and Q1 = {q0, q1,0, q1,1, q⊺},

b) safety coloring τ ∶ Q→ {1,2} where τ(q) = 1 iff it is the bad state q = q�,
c) alphabets Σ = {a, b, c} ∪QM×{0,1}2 and Γ = {$},
d) transitions:

i) first phase:
1) δ(q0,A, a) = (q0,$A),

2) δ(q0,A, b) = (q0,W ) where W =
⎧⎪⎪⎨⎪⎪⎩

� if A = �,

ε if A = $,

3) δ(q0,A, c) = (q1,i,A) where i =
⎧⎪⎪⎨⎪⎪⎩

0 if A = �,

1 if A = $,

4) δ(q1,i,A, b) = (q1,i,W ) where W =
⎧⎪⎪⎨⎪⎪⎩

� if A = �,

ε if A = $,

5) δ(q1,i,�, c) = ((qM0 , i),�),
ii) second phase:

1) δ((p, i),A, (p, r0, r1)) = ((q, i),W ) for δM(p, r0, r1) = (q, d0, d1)

where A =
⎧⎪⎪⎨⎪⎪⎩

� if ri = 0,

$ if ri = 1,
and W =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε if di = −1,

A if di = 0,

$A if di = +1,

iii) all other cases: δ(p,A,x) = (q,A) where q =
⎧⎪⎪⎨⎪⎪⎩

q� if p ∈ Q0,

q⊺ if p ∈ Q1.

The intention of this construct is the following. In the first phase Player 1 can
play a finite sequence anbmcb`c with n ≤m+`. Then in the second phase Player 0
answers with an infinite sequence over QM×{0, 1}2 which identifies M -transitions.
Depending on whether n =m held previously, the game simulates either register
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0 or 1, i.e., the counter of the game mimics all increase and decrease operations
and verifies zero-tests for the simulated registers. Player 0 looses iff his transition
sequence is inappropriate with respect to the simulated register.

If M has a UP run, then Player 0 has a winning FSS by playing exactly this
run no matter which register is simulated. For the converse, assume that Player 0
has a winning FSS S with s states. After an action sequence as, there must have
been a state repetition in S: δ∗S(ax) = δ∗S(ay) with 0 ≤ x < y ≤ s. Thus, S is in
the same state when in the first phase Player 1 gives the sequence axbxcbyc or
aybxcbyc, respectively, and does not known which register is simulated in the
second phase. But since S is winning, it must produce a UP transition sequence
that correctly handles both registers. Hence, this sequence is the run of M . ⊓⊔

Next, we show a similar result for visibly PDG instead of 1CG by a variant of
the latter proof. But let us first define the new restriction. The idea is that from
the input letter a ∈ Σ one can determine how the stack height is altered [1]. A
deterministic pushdown machine is called visibly with respect to a partition of
the input alphabet Σ = Σi ⊎Σc ⊎Σr when for all transitions:

δ(q,A, a) = (q′,W ′) implies that a ≠ ε and W ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A if a ∈ Σi,
A′A if a ∈ Σc,
ε if a ∈ Σr and A ≠ �,

� if a ∈ Σr and A = �.

This restriction is lifted to pushdown automata and games.

Theorem 21. For a safety visibly PDG, it is undecidable whether Player 0 has
a winning finite state strategy.

Proof. The construction is basically the same as in the proof of Theorem 20. But
due to the visibility restriction we have to change one detail since the transitions
played by Player 0 should not directly control the stack height. To fix this, we put
Player 1 in charge of updating the register value on the stack. Due to the visibility
property, we still have to prevent Player 0 from knowing the number of counting
symbols. For this reason, we introduce an additional dummy stack symbol #
beside the counting symbol $. Thus, in the second phase a word W ∈ {#,$}∗ on
the stack represents the value ∣W ∣$, i.e., the number of $ symbols in W . So after
Player 0 chose an M -transition, it is on Player 1 to either disprove it or to update
the stack accordingly. The update step is done in a similar way as the complete
first phase of the game such that an FSS of Player 0 cannot remember what
happens although it can see all changes in stack height. Afterwards, Player 0
continues with the next transition.

Formally, we define for a given 2RM M = (QM , δM , qM0 , FM) the weak 1CG
G = ((Q,Σ,Γ, δ, q0,�), τ,Q0) with

a) states Q = Q0 ∪ Q1 where Q0 = {q�} ∪ QM×{0,1}, and Q1 = {q0, q⊺} ∪
QM×{0, 1} × {0, 1} × {−1, 0,+1} ∪QM×{0, 1} × {−1, 0,+1} ∪ {check0, check1},
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b) safety coloring τ ∶ Q→ {1,2} where τ(q) = 1 iff it is the bad state q = q�,
c) alphabets Σ = Σi⊎Σc⊎Σr with Σi = {c, d}∪QM×{0, 1}2, Σc = {a}, Σr = {b},

and Γ = {$,#},
d) transitions:

i) first phase:
1) δ(q0,A, a) = (q0,#A),
2) δ(q0,#, b) = (q0, ε),

3) δ(q0,A, c) = ((qM0 , i),A) where i =
⎧⎪⎪⎨⎪⎪⎩

0 if A = �,

1 if A = #,

ii) second phase:
1) δ((p, i),A, (p, r0, r1)) = ((q, i, ri, di),A) for δM(p, r0, r1) = (q, d0, d1)

to select an M -transition,
2) δ((q, i, r, d),A, c) = ((q, i, d),A) to push/pop $ symbols according to

d for the M -transition chosen by Player 0:
I) δ((q, i,+1),A, a) = ((q, i,0),$A), (push one $ if d = +1)

II) δ((q, i, d),A, a) = ((q, i, d),#A) if d ≠ +1, (otherwise push #)

III) δ((q, i, d),#, b) = ((q, i, d), ε), (ignore #)

IV) δ((q, i,−1),$, b) = ((q, i,0), ε), (pop one $ if d = −1)

V) δ((q, i,0),A, c) = ((q, i),A), (end of simulation if d = 0)

3) δ((q, i, r, d),A, d) = (checkr,A) to disprove that the M -transition
chosen by Player 0 can be performed:
I) δ(checkr,#, b) = (checkr, ε), (ignore #)

II) δ(check0,$, b) = (q�, ε), (disproof r = 0 by popping $)

III) δ(check1,�, b) = (q′�, ε), (disproof r = 1 by reaching �)
iii) all other cases: δ(p,A,x) = (q,W )

where q =
⎧⎪⎪⎨⎪⎪⎩

q� if p ∈ Q0,

q⊺ if p ∈ Q1,
and W =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A if x ∈ Σi,
#A if x ∈ Σc,
ε if x ∈ Σr and A ≠ �,

� if x ∈ Σr and A = �.

Thus, the first phase works as in the proof of before and determines whether
register 0 or 1 is simulated in the second phase. Then each time after Player 0
played a transition Player 1 can choose to apply its according register update
to the stack by playing c or to disprove it by playing d. In the latter case, the
stack is popped to find out whether there is a $-symbol above the bottom �
contrary to the claim of Player 0 that the register is empty, or vise-versa. In the
first case, Player 1 can play a sequence anbm. By this, one $-symbol is pushed
onto or popped from the stack whereas all other operations are only concerning
the dummy #-symbols. Similarly to the first phase, an FSS cannot know the
new stack height. Hence, it does not know which register is simulated since the
register operations appear all the same to it. Then rest of the proof is as for
Theorem 20. ⊓⊔
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