
On Parikh Images of Higher-Order Pushdown Automata
(Extended Abstract)1

Wong Karianto

Lehrstuhl für Informatik VII, RWTH Aachen, D-52056 Aachen, Germany
e-mail: karianto@informatik.rwth-aachen.de

ABSTRACT

We introduce the notion of semi-polynomial sets, generalizing the notion of semi-linear sets, and show

that each semi-polynomial set is the Parikh image of level 2 pushdown automata, which represent a

special class of higher-order pushdown automata.

Keywords: Parikh mapping, semi-linear sets, polynomials, higher-order pushdown automata

1. Introduction

The Parikh mapping, which gives information on the distribution of symbols in a word or a
language, respectively, has turned out to be a quite useful tool in the study of formal languages.
In particular, in the context of context-free languages it provides a bridge between formal lan-
guage theory and number theory: Parikh’s theorem [8] asserts that the Parikh image (that is,
the image under the Parikh mapping) of any context-free language is always a semi-linear set
of vectors of natural numbers, and moreover, given a representation of a context-free language,
its (semi-linear) Parikh image can be effectively constructed. Given this fact, for instance, the
decidability of the emptiness problem for context-free languages follows immediately.

There are several automaton models known in the literature that generalize pushdown au-
tomata, which precisely recognize context-free languages. Higher-order pushdown automata
(HOPDA) represent such a model; an HOPDA, essentially, is a pushdown automaton whose
infinite store is a (multiply) nested pushdown stack, that is, a stack of stacks of . . . of stacks.
For an exposition of this model, see, for instance, [7, 4, 3]. In current research, this model is of
interest in model checking by its strong decidability properties. Not only the emptiness problem
for HOPDA’s is decidable, but also the monadic second-order theory of the transition graph of
any HOPDA [2].

Despite these nice properties and the tight connection to pushdown automata, surprisingly,
HOPDA’s have not been much studied in terms of their Parikh images. In particular, a precise
characterization of the Parikh images of HOPDA’s is still missing. In this work, we explore this
issue for a fairly small class of HOPDA’s, namely for the level 2 HOPDA’s (2-PDA’s), which are
pushdown automata with a stack of stacks as infinite store. We show that 2-PDA’s can generate
polynomials in a sense to be defined more precisely later on. Although we have not succeeded
in identifying a class of vectors of natural numbers that captures the Parikh images of 2-PDA’s
yet, our result might suggest which ingredient is needed for such a class.

Following this introduction, in Sect. 2 we fix our notation and propose the notion of semi-
polynomial sets as a generalization of semi-linear sets. In Sect. 3 we outline the idea of showing

1This work is part of an ongoing joint work with Aloys Krieg and Wolfgang Thomas.

2 Wong Karianto

that each semi-polynomial set can be generated as the Parikh image of a 2-PDA. Section 4
concludes with some remarks.

2. Semi-Polynomial Sets

We denote the set of natural numbers by N and the set of vectors of natural numbers of
dimension n ≥ 1 by N n. Recall that a subset A of N n, n ≥ 1, is linear if there are vectors
ū0, ū1, . . . , ūm ∈ N n, m ≥ 0, such that A = {ū0 + k1ū1 + . . . + kmūm | k1, . . . , km ∈ N}. The set
A is semi-linear if it is a finite union of linear sets.

Let n ≥ 1 and Σ = {a1, . . . , an} be an alphabet. The Parikh mapping Φ: Σ∗ → N n is defined
by Φ(w) = (|w|a1

, . . . , |w|an
), for each w ∈ Σ∗. The Parikh image (or commutative image) of a

language L ⊆ Σ∗ is the set Φ(L) := {Φ(w) | w ∈ L} ⊆ N n.

A natural generalization of semi-linear sets is the following:

Definition 1 A subset A of N n, n ≥ 1, is a polynomial set of degree d ≥ 1 if there is a vector
ū0 ∈ N n and a family of vectors (ūi,j)1≤i≤m,1≤j≤d in N n, for some m ≥ 0, such that

A = {ū0 +k1ū1,1 + k2
1ū1,2 + · · · + kd−1

1 ū1,d−1 + kd
1 ū1,d

+ · · · + kmūm,1 + k2
mūm,2 + · · · + kd−1

m ūm,d−1 + kd
mūm,d | k1, . . . , km ∈ N} .

The set A is a semi-polynomial set of degree d if it is a finite union of polynomial sets of degree
d. The set A is a polynomial (resp. semi-polynomial) set if it is a polynomial (resp. semi-
polynomial) set of degree d for some d ≥ 1. Occasionally, we refer to (semi-)polynomial sets of
degree 2 as (semi-)quadratic sets.

Clearly, each (semi-)linear set is (semi-)polynomial.

Given the generators of a polynomial set A as in the definition, one can decide whether a given
vector ū = (u1, . . . , un) belongs to A; it suffices to check the ki-values up to max(u1, . . . , un).
Hence, the membership problem for a semi-polynomial set is decidable.

Example 2 The set A1 := {(u1, u2) ∈ N 2 | u2 = u2
1} is quadratic since it coincides with

A1 = {(0, 0)+ k(1, 0)+ k2(0, 1) | k ∈ N}. Furthermore, it is not difficult to show that A1 is not
semi-linear, for instance, by using a simple growth rate argument.

One can also show that the set {(u1, u2) ∈ N 2 | u2 = ud+1
1 } is not semi-polynomial of degree

d, for each d ≥ 1, and that the set A2 := {(u1, u2) ∈ N 2 | u2 = 2u1} is not semi-polynomial.

It is worth noting that the product relation, such as the set A3 := {(u, v, uv) | u, v ∈ N} ⊆ N 3,
is not semi-polynomial. For this, the simple comparison of growth rates does not suffice, and
some deeper structural analysis is needed.

3. Level 2 Pushdown Automata

The purpose of this section is to show that a simple extension of pushdown automata suffices to
generate (via the Parikh mapping) all semi-polynomial sets. More precisely, we consider level
2 pushdown automata (2-PDA), which are a special case of higher-order pushdown automata.
Roughly speaking, A 2-PDA is a finite automaton augmented with a pushdown stack whose ele-
ments are again pushdown stacks. The model of 2-PDA is known to be equivalent to the indexed
grammars of [1], so the languages recognized by 2-PDA are precisely the indexed languages [4].

We now introduce 2-PDA more precisely, following [2]. We use Γ as stack alphabet and
⊥ ∈ Γ as initial stack symbol. A level 1 pushdown stack (1-stack) over Γ is a sequence of stack
symbols denoted by [Zm · · ·Z1], m ≥ 0, where Zm is considered as the topmost symbol. A level 2
pushdown stack (2-stack) is a sequence [sr, . . . , s1] of r ≥ 1 1-stacks. Note that a 2-stack always

On Parikh Images of HOPDA’s 3

contains at least one 1-stack. The empty 1-stack is denoted by [ε] while the empty 2-stack, which
contains only one single empty 1-stack, is denoted by [[ε]]. During any computation, only the
topmost symbol of the topmost 1-stack can be accessed. The set Instr of the instructions that
can be executed on a 2-stack comprises: (1) pushing a stack symbol Z to the topmost 1-stack,
(2) copying the topmost 1-stack completely and placing it on top of the 2-stack, (3) removing
the topmost symbol of the topmost 1-stack, and (4) removing the topmost 1-stack completely.
Note that the latter instruction can only be executed if the resulting stack is again a 2-stack.

A level 2 pushdown automaton (2-PDA) is of the form A := (Q, Σ, Γ, δ, q0,⊥), where Q is a
finite, nonempty set of states, Σ the input alphabet, Γ the stack alphabet, δ: Q × (Σ ∪ {ε}) ×
(Γ∪{ε}) → P(Q× Instr) the transition function, q0 ∈ Q the initial state, and ⊥ ∈ Γ the initial
stack symbol. A configuration of A is a pair (q, s), where q is a state in Q , and s is a 2-stack.
The initial configuration of A is (q0, [[⊥]]). The 2-PDA A can reach a configuration (q′, s′) from
a configuration (q, s) by reading a ∈ Σ ∪ {ε} if δ(q, a, top(s)) contains (q ′, instr), where top(s)
denotes the topmost symbol of the topmost 1-stack of the 2-stack s, and instr(s) = s′. The
2-PDA A accepts a word w ∈ Σ∗ if A reaches from the initial configuration a configuration
(q, [[ε]]), for some q ∈ Q, after reading w. The language recognized by A is denoted by L(A).

Example 3 The language L := {akbk2

| k ∈ N} ⊆ {a, b}∗ is 2-PDA recognizable. We give an
informal description of a 2-PDA A which recognizes L.

The stack alphabet of A is Γ := {⊥, Z, Z2}; On an input word w := akbk2

, A reads the
ak-prefix of w while pushing (2k)-many Zs into the stack and a Z2. The resulting 2-stack is
[[Z2Z

2k⊥]]. Then, A copies the topmost 1-stack and removes two symbols which are not ⊥ from
the stack, resulting in the stack [[Z2k−1⊥], [Z2Z

2k⊥]]. The last step is repeated until the topmost
1-stack contains only one Z. Now, the resulting stack is [[Z⊥], [Z3⊥], . . . , [Z2k−1⊥], [Z2Z

2k⊥]].
The number of Zs which lie above Z2 is

∑k−1

i=0
(2i+1), which yields k2. Now A just pops the Zs

one by one while reading bs until Z2 is seen, then empties the stack, and accepts.

Note that the quadratic set A1 of Example 2 is the Parikh image of the language L of Example
3. In other words, the set A1 can be generated as the Parikh image of a 2-PDA recognizable
language. Exploiting this idea, we show that each semi-polynomial set is the Parikh image of a
2-PDA recognizable language. At the core of our construction, we use a 2-PDA that generates,
starting from a top stack content with 2k symbols Z, the values k, k2, . . . , kd via the Parikh
mapping, thereby returning to the initial stack content and not touching the stacks below.
Given this preparation, we can then show our main result:

Theorem 4 Let n ≥ 1. Every semi-polynomial subset of N n is the Parikh image of a language
recognizable by a 2-PDA.

Proof. (sketch) Without loss of generality, we restrict ourselves to polynomial sets.
Let A ⊆ N n be a polynomial set of degree d ≥ 1, given by its constant vector ū0 and its

periods ūi,j (1 ≤ i ≤ m, 1 ≤ j ≤ d), for some m ≥ 0. We take Σ := {a1, . . . , an} and assign to
each generator vector of A a word in a∗

1 · · · a
∗
n such that the Parikh image of this word yields the

corresponding generator vector. Let us call these words w0 and wi,j (1 ≤ i ≤ m, 1 ≤ j ≤ d).
We construct a 2-PDA A such that the Parikh image of L(A) yields A. More precisely, L(A)

will contain the following words, for k1, . . . , km ∈ N :

w0 wk1

1,1w
k2

1

1,2 · · ·w
k

d−1

1

1,d−1
w

kd

1

1,d · · · wkm

m,1w
k2

m

m,2 · · ·w
k

d−1

m

m,d−1
w

kd
m

m,d

The construction of A generalizes the basic idea of Example 3 and is omitted in this abstract.
The full proof can be found in [5]. 2

The Parikh images of 2-PDA recognizable languages give a much larger class than just the
semi-polynomial sets. For example, the language {akb2k

| k ∈ N}, whose Parikh image is not

4 Wong Karianto

semi-polynomial (see the set A2 above), is 2-PDA recognizable. A nice 2-PDA construction2

uses bits as top stack symbols, combined to binary representations of numbers. For example, in
the case of k = 4 the number 12 with binary representation 1100 is coded by the 2-stack

[[0⊥],

[0Z⊥] ,

[1ZZ⊥] ,

[1ZZZ⊥]] .

It is not difficult to implement the counting process from 0 to 2k − 1 using this structure and
process input b2k

, starting from a 1-stack of length k, which is produced upon input ak.
The 2-PDA of Example 3 does not require the special symbol Z2; it can be turned into a

‘level 2 counter automaton’ with stack symbols Z,⊥ only. This model also suffices to recognize
{ambncmn | m, n ∈ N}, whose Parikh image is the (non-semi-polynomial) product relation A3

(construct a stack of length m and copy it n times, generating a stack of size mn). So even level
2 counter automata can generate sets which are not semi-polynomial.

4. Concluding Remarks

In this work, we looked at the power of 2-PDA’s in term of their Parikh images. Although we
have not succeeded in characterizing these sets, we have seen some of the ingredients needed for
such characterization: polynomial terms as well as (one-fold) exponential terms.

In a recent work of Lisovik and Karnaukh [6], a related result is shown in the framework
of indexed grammars, however aiming at the representability of unary functions f :N → N
via indexed grammars over a unary terminal alphabet. Our treatment covers relations and thus
functions of higher arity, and the model of 2-PDA’s used here seems to give a more direct insight
into the underlying computations.

Acknowledgements

I would like to thank Wolfgang Thomas for supervising this work.

References

[1] A.V. Aho: Indexed grammars—an extension of context-free grammars. Journal of the ACM
15 (1968) 647–671

[2] A. Carayol, S. Wöhrle: The Caucal hierarchy of infinite graphs in terms of logic and higher-
order pushdown automata. In Proc. FSTTCS 2003. LNCS 2914. Springer (2003) 112–123

[3] W. Damm, A. Goerdt: An automata-theoretic characterization of the OI-hierarchy. In Proc.
ICALP 1982. LNCS 140. Springer (1982) 141–153

[4] J. Engelfriet: Iterated pushdown automata and complexity classes. In Proc. STOC 1983.
ACM Press (1983) 365–373

[5] W. Karianto: Parikh automata with pushdown stack. Diploma thesis, RWTH Aachen (2004)

[6] L.P. Lisovik, T.A. Karnaukh: A class of functions computable by index grammars. Cyber-
netics and Systems Analysis 39 (2003) 91–96

[7] A.N. Maslov: Multilevel stack automata. Problems of Information Transmission 12 (1976)
38–42

[8] R.J. Parikh: On context-free languages. Journal of the ACM 13 (1966) 570–581

2The underlying idea is due to Carayol and Wöhrle and is mentioned here with their kind permission.

