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Abstract For any language L, let pow(L) = {v/ | j > 0, u € L} be
the set of powers of elements of L. Given a rational language L (over a
finite alphabet), we study the question, posed by Calbrix 1996, whether
pow(L) is rational or not. While leaving open the problem in general, we
provide an algorithmic solution for the case of one-letter alphabets. This
case is still non trivial; our solution is based on Dirichlet’s result that
for two relatively prime numbers, their associated arithmetic progression
contains infinitely many primes.

1 Introduction

A great amount of work was done in studying rational languages and finite au-
tomata since the origins of the theory in 1956 (see [Kle 56] and [Per 95]). This
theory is well developed and a lot of results are applicable via the effective prop-
erties of rational languages (see [HU 79] or [Per 90] for instance). The problem
studied in this paper is easy to enunciate: we note

pow(L)z{uﬂjZO,uEL}zUu* crL*,
u€L

and consider the decision problem whether this language is rational if L is ra-
tional. More precisely, we are searching under which condition on L, pow(L)
remains rational. This problem is far from trivial, it was first mentioned and
left open in [Cal 96] (see also [CN 96]). As a simple example, consider the
language L € Rat({a,b}*) defined by the rational expression ab*. Its power
pow(L) = Urso (ab*)™ is context-sensitive but it is not context-free and of course
not rational.

We recall the background of [Cal 96]. The rational w—languages are charac-
terized by their ultimately periodic words, of the form uv®. Of course uv® =
u(v®)” = wt(W*)?, 1,k > 0. Given M C A% one defines its “periods”:

per(M) ={ve At | Ju e A*, wv” € M} C A*.

An important result is that if M is rational, then per(M) is rational. Note
that pow(per(M)) = per(M). We can also consider a partial representation
L € Rat(A*) such that pow(L) = per(M), and ask whether pow(L) € Rat(A*).

* A previous version of this paper appeared in the Proceedings of the 5th international
conference Developments in Language Theory, volume 2295 of Lecture Notes in
Computer Science, pages 145-154. Springer, 2002.



For other classes of the Chomsky hierarchy than the regular languages, the
question of the stability by the operation of power is easy and has a positive
answer. We note the following facts:

- The power of a recursively enumerable language (u;); is recursively enumer-
able too: one can enumerate ((u,)J ) ~, the same way as N?.

4,2
- The power of a recursive language L is also recursive: a Turing Machine can,

in a finite time, look for all decompositions of a word u € A*, in the form of a
power u = v*, and test if v € L (on another part of the band).
- We have the same result for a context-sensitive language.

In this paper, we restrict ourselves essentially to the special case of a one-letter
alphabet (say A = {a}), and give an effective solution in Theorem 7. With
this restriction, the languages can be easily represented as sets of integers, and
we can use some elementary facts of arithmetic. In Section 3, we expose our
main theorem and prove it. After that we mention possible future work in the
conclusion.

2 Rational sets of integers

In this section we recall some classical results to handle rational sets of integers
and give examples.

We first recall the notion of rational languages over a finite alphabet A (see
[Per 90]): one denote Rat(A*) the smallest set of languages which contains the
finite languages and is closed under union (U), concatenation (.), and star (*) (the
reflexive transitive closure of the concatenation). Since [Kle 56], it is known that
Rat(A*) is also the set of languages which are recognizable by finite automata,
and is closed under complementation and intersection.

From now on we are considering a one-letter alphabet A = {a} and remark
that each word a® of a* is characterized by its length k¥ € N. We identify a given
L C a* with the set {k > 0| a¥ € L} C N. The structure (a*, U, -,*) is isomorphic
to (N,U, +,® ), where U is the usual union, M + N ={m+n | m € M,n € N},
and M® = {0} UM U (M + M)U---. The set of rational languages of integers
is denoted by Rat(N):

M € Rat(N) < {a* | k€ M} € Rat(a*) .

Note that over a one-letter alphabet, the context-free languages are exactly the
rational languages. According to [Per 90, p.36], Rat(N) is the set of 1-recognizable
languages of integers: their representation in basis 1 is rational.

The product of sets of integers is defined with the usual multiplication:

VM,NCN, M.N={mn|meMmneN}.

Note that the operations + and . on sets of integers are still associative and
commutative. We might omit the symbol (.) for the multiplication. For any



L C a*, pow(L) is isomorphic to MN, with M = {k > 0 | a* € L}, just because
(a*) = a*7 for j > 0. That is to say, multiplication over the integers corresponds
to the power operation over words. Now we can formulate our main question in
terms of integers: given M € Rat(N) we want to determine whether

MN € Rat(N) .

The previous remarks allow to characterize Rat(N) directly in an intuitive way.

Lemma 1 (rational [Bii 59] [ES 69]) For any M CN,
M € Rat(N) iff M is ultimately periodic:

In>0,ImeN, IC[0,m), PC[m,m+n), M=TU(P+nN) .

By convention nN = {n}N = {nk | k € N}, and [a, b) is the segment of integers
between a and b (a included, b excluded). In the situation of this lemma, we will
say that n is eligible as a period for M, and (n,m, I, P) is a representation of
the rational language M. Let [z], = (z + nZ) NN be the class of z modulo n in
N. The rationality of M is also equivalent to the following condition:

In >0, Vz € [0,n), [z],N M is finite or co-finite.

Example 2 The language 0 U (5 + 2N) is rational, represented by

(2,5,{0},{5})..

Note that for languages of integers, the well known pumping lemma becomes an
equivalence:

LeRat(N) ©3IbeNVIELl>b30<r<b l+rNCL
©3beN3I0O<r<bVIeLlzb I+rNCL.

This periodicity indicates that the “density” of a rational set is constant after
a certain point, but we cannot always calculate it easily. The following example
shows that it is not a sufficient condition of rationality.

Example 3 Consider M = (1+2N) U{2F |k >1})\{2"+1 |k > 1}.

In each segment [2m,2m + 2) there is ezactly one element of M, so we can say
that the “density” is constant. But M is not ultimately periodic: its period would
be greater than 2, for each k > 1.

We still have a proposition that allows to prove (by contraposition) that some
sets of the form MN are not rational. We note |M | the cardinal of a (finite) set
M CN

Proposition 4 For all L € Rat(N),

L
i 1201020

t—o0

is well defined, and if this limit is 0, then L is finite.



Consider some simple examples of the product of a rational set by N:

NN = (1 +N)N = (1 + 2N)N = N € Rat(N), because NN D 1.N=N

(2+2N)N = 2(1 + N)N = 2N € Rat(N), but

(3+2N)N =N\ 2N ¢ Rat(N).

Where 2" is {2F | k € N}. Indeed the set (3 + 2N)N consists of products of odd
numbers greater than 1 and integers, so they cannot be a power of 2; conversely,
an integer that is not a power of 2 has at least one odd prime factor. And the
language 2N is not (ultimately) periodic.

To compute MN for a given M, a natural approach is to calculate M U2M U
3M ---. Possibly that after some steps the union remains the same. In this case
MN is rational as a finite union of rationals. In the other case this may not be
true. For example M = 2 U (3 + 2N) has the property that MN = N\ {1} €
Rat(N) (see Theorem 7), but the previous computation would be infinite (in
brief 27+ & M. [0, 27)).

In many cases we need the notions of division and prime number. The main
idea of this paper is to use the basic properties of relative primality We write
“a | b” for “a divides b”. We assume that a | 0, even if a = 0. The set of prime
numbers is denoted by &.

We recall some results of arithmetic. They can be found e.g. in [AF 87] or
[GKP 94] (Chap.4). The main fact we have used is Theorem 6 below. It is well
known that &7 is infinite and not rational. The idea of the classical proof will
be reused in Lemma 8. In fact there are less and less prime numbers along the
integers (see [Ser 70] or [GKP 94]), but the density is decreasing very slowly.

Proposition 5 For all a,b € N,
aNNbN = lem(a, b)N and ab = lem(a, b) ged(a, b) -
Theorem 6 (Dirichlet 1840) For all a,b > 0,
ged(a,b) =1 & |ZN(a+bN)| =00.

The proof can be found in [HW 38] or [Ser 70]. We just give the easy direction:
let a,b > 0. If gcd(a,b) = d and d > 1 then all the integers of (a + bN) are
divisible by d, so they contain at most one prime number, namely d.

3 The power of one-letter languages

In this section we will show our main result.

Theorem 7 For a given language L € Rat(N), one can decide algorithmically
whether LN € Rat(N).

We denote
Inv(m,q) = {x € [m,m +q) | ged(z,q) =1},

the set of integers relatively prime to ¢ (“invertible” in Z/qZ), between m and
m + q — 1. To prove the theorem, we propose the following algorithm.



Algorithm: Rationality test for LN, L rational

Input: L € Rat(N) represented by (g, m, I, P) (see Lemma 1) with
L=ITU(P+¢gN), whereqg>1, m>0,IC[0,m), P C[m,m+q)
Output: “LN € Rat(N)” or “LN ¢ Rat(N)”

1 If 1 € L, then LN € Rat(N), end.
2 Else, if § # Inv(m,q) N P # Inv(m,q), then LN ¢ Rat(N), end.
3 Else, if Inv(m, q) C P, obtain the answer with the equivalence:

INeRat(N & Vp<m+qpeZ=>Tb>1,p"€el) .

end.
4 Else we have § = Inv(m,q) N P.
Compute, for each prime divisor u of g,

i
=42 I
“{www)xe}’

T T+q z+q(u—1
Po=eplutau |J {5554 2RO

zEP, u|z

and I, = (I, U (Py + ¢N)) N[0,m), P, = (P, 4+ ¢N) N[m,m + q).

Let L}, = I, U (P, + ¢gN). If L!, # L (i.e., I,, # I or P} # P), then call
recursively the algorithm with (¢, m, I}, P.), to determine whether L!N €
Rat(N). Collect every answer. Then answer with:

INeRat(N) & VYue & (u|q,L), # L = LN € Rat(N)) .

As a preparation to the correctness proof, we show the two following lemmas
related to points 2 and 3 of the algorithm.

Lemma 8 If1 ¢ L and § # Inv(m,q) N P # Inv(m,q), then LN ¢ Rat(N).

Proof: By hypothesis, we can choose k € Inv(m, q)\ P. We know by Dirichlet’s
Theorem (6) that k+¢N contains infinitely many prime numbers (gcd(k, ¢) = 1).
They are not in L = I U (P + gN), because k ¢ P. Let p € k + ¢N be a prime
number, p € L, and by hypothesis 1 ¢ L, so p € LN: the only way to write p as
a product is 1.p or p.1. As a consequence, M = [k], \ LN is infinite. We will see
that it is not rational. By hypothesis, we also have some s € Inv(m,q) N P. Let
n > 0 and consider
f=s(s+q)---(s+qn).

The number f is relatively prime to ¢ since s is, and so it is invertible in Z /¢Z.
Let 2 > 0 such that z.f = k— s (mod q). Remark that the integers zf + s,z f +
s+4q, - ,xf + s+ g.n are equivalent to k¥ modulo ¢q. But they are respectively
divisible by s,s 4+ ¢q,--- ,s + gn, since f is. So the numbers

zf+s zf+s+¢q zf +s+qn

s ' s+q 7 s+qn




are integers. Of course s,s + ¢, -+ ,s + qn are in (s + ¢N) C L, and so zf +
s,xf +s+4q,- - ,xf + s+ gn are in LN. As a consequence, the segment [zf +
s,zf +s+q(n+1)) has an empty intersection with M.

This argument applies to any n > 0, and M infinite, so M is not ultimately
periodic, hence M ¢ Rat(N). We conclude that LN is not rational. B

Lemma 9 If1 ¢ L and Inv(m,q) C P, then
IN€eRat(N) & Vp<m+qpe Z=Jb>1p"eL).

Proof: If Inv(m,q) C P, then P + ¢N contains all numbers greater than m
which are relatively prime to ¢. Thus it contains all prime numbers greater than
m + q: if p € &, then p is relatively prime to ¢ or p divides ¢; but if p > g,
then p 1 ¢. So only a finite number of primes is not in L. We denote (py,) k>0 the
increasing sequence of all prime numbers. Let n > 0 be such that p,4+1 > m +q.
The language L contains the py for k¥ > n. One fixess M = N\ LN. For each
k< n,let by =min({b > 0| pr® € L} U {c0}). One can prove that

Mg{poao"'pna" |a0<b05"'7an<bn} -

Indeed, for each z € N, if 2 has a prime factor p;,j > n, then p; € L, and
z€piNCILN=xz¢ M. So, if x € M, then z is pp® - - p,*", but if there is a
k such that ay > by, then = € pp** N C LN.

In the case that Vp < m+¢q, p€ &, Ib > 1, p® € L, each by, is finite, and
then M is finite (so rational), that is LN is co-finite, and rational. We conclude:

Vp<m+q(pe Z=I>1p"€L) = LNeRat(N).

Conversely, in the case that 3j < n, Vb > 1, pjb ¢ L, we have b; = oo, and M
is infinite: it contains p;N (1 & L, and the only factors of p;? are the p;*, k < ).
We will prove that M is not rational with an argument of density inspired by
[Cal 96]. We want to bound the number of elements of M lower than e!, for
t>1:

P - ppm < el = aglnpy +---+aplnp, <t
= Vk < n, ak<L<L = ao,---,ane[O,L).
Inp, =~ In2 In2
n+1

That consists of at most (5 + 1) different (n41)-tuples:

+1 n+1
M| _ (g +1)

t—oco
7 7 — 0.
e e

t
M N[Le)| < (E +1)

The density of M has the limit zero, and thanks to Proposition 4 (M is infinite),
we conclude that M ¢ Rat(N), then LN ¢ Rat(N). B

Now we prove the correctness of the algorithm for all cases.

Proof: (Theorem 7) We proceed in two steps: proof of partial correctness



(under the assumption of termination), and proof of termination.

Proof of partial correctness
Let L = I U (P + gN). We follow the algorithm step by step.

1-If1 € L, then LND IN=N, and LN = N € Rat(N).

2- see Lemma 8

3- see Lemma 9

4- Else, we obtain Inv(m,q) N P = }. Each element of P has a (strict) common
divisor with g, those of P + ¢gN too, and those of (P + ¢gN)N also.

The idea is to decompose the problem by considering the rationality of uNN LN
for some u € &. We have clearly

LN € Rat(N) = Yu e &, u|q,(uNNLN) € Rat(N) .
The problem is to find a kind of converse: to find a set U C & N [2, ¢ such that
LN € Rat(N) « Vu e U, (uNN LN) € Rat(N) .

We claim that the set U = {u € & | u | ¢ and L], # L} is convenient (and it
is exactly what we need for the termination!). The set UN is rational as a finite
union of rational sets, and

LN € Rat(N) & UNNLN € Rat(N) and (N\ UN) N LN € Rat(N) .

We will show later that (P+¢N)N C UN. Assuming this fact we have (N\UN)N
LN = (N\ UN) N IN, which is rational (I is finite). So we have

LN € Rat(N) < UNNLN € Rat(N) .

We decompose into:

UNNLN = (U uN> NIN= |J(uNNLN);

uelU uelU
LN € Rat(N) & Vu e U (uNN LN) € Rat(N) .
INeRat(N) & Yue £ (u|q, L), # L = LN € Rat(N)) .

We still have to calculate the uNN LN, and then to show that (P +¢N)N C UN,
which proves that the set U is “convenient”.

Let u € Z,u | q. For each z € P, if u | z, then u divides each element of = + gN,
so uNN (z + gN)N = (2 + ¢N)N. Else gcd(u,z) = 1 and wu is also relatively prime
to each integer of z + ¢N, hence uN N (z + ¢gN)N = (z + gN)uN (Prop. 5). In
general

u
P = —
uNN (P + ¢N)N U(m+qN)ng(u7x)
zeP
Similarly for I,
ru
IN=| | ——
uNNIN wLGJIgcd(u,x)N



The interest in calculating the intersection with uN is that all elements are
divisible by u. Now:

" =

uNN LN T T q
- (U st U (e gcd(u,:c)N)> N

zel zeP

Consequently, uN N LN € Rat(N) is equivalent to L,N € Rat(N), with

L,=1,U(P,+¢N), qu{:c/gcd(u,x”mel},

P,={ze€eP|utz}U U {S’m-l-q"”,x-i-q(u_l)}‘

U U
zEP, ulz
But this representation is not canonical with respect to Lemma 1, we must then
consider:

L=T.UPu+qN)N[O,m), Py=(Pu+qN)N[m,m+q),

and L, =I,U(P, +¢N) ,
as enunciated in the algorithm. One observes

uNN LN

L,N=IL,N=
u

Indeed, for each = € I, z is replaced by = or z/u in L, and L!. And for all
z € P, x is replaced by z or z/u, (x + ¢)/u, -+ ,(z + ¢(u — 1)) /u in L,. In the
first case, = stay identically in L!,, in the second each new element is smaller or
equal than (z + ¢(u — 1)) /u, and

+qu—1 +g+qu—1
z+q(u )<m q+q(u )<%+q<m+q,

X
u u

so the construction of L), does not omit any element, and L, = L!,. After that
we can call the algorithm for (each) L,.

To prove that (P+¢N)N C UN, it is sufficient to show that Vz € P,3u € U, u | z,
because
PCUN= P+¢NCUN= (P+¢N)N CUN

(recall that u | ¢). Let € P. By hypothesis (case 4) Ju € Z,u | z and u | q.
The question is whether L!, # L, i.e., u € U. We suppose by absurd that
Vue Z,(u|z)A(u|q) =L, =L.

We consider a prime factor decomposition: ged(z,q) = ug - - - up, where Vk <
n,ur € & (possibly ug = ui,---). By hypothesis Vk < n, L), = L. Using the
computation of the L! above, we see that

X
2+ ANCL, =
Uo Ug



But uy | uw—o and uq | %,so

T q
+
UoU1 UoU1

NCL, =L,

and so on, by induction on n one can show

T + % NcL.
uO---u" uO---un

Let #' = —2—, ¢ = —%—. By construction gcd(z',¢') = 1. By Theorem 6,
0" Un uUQ*Up

z' + ¢'N contains infinitely many primes. In particular Jy € (z' + ¢N) N Z N

[m+¢g+1,00), thatisy € LN & and y > m + ¢, so y is relatively prime to g,

which is a contradiction with § = Inv(m,q) N P (case 4).

So we conclude the partial correctness of the algorithm.

Proof of termination

Most of the steps of the algorithm are clearly effective, using the representation
(g;m, I, P) of L. We just have to justify two points: there is a finite number of
recursive calls, and we can determine if

Vp<m+q, pe P, Ib>1,pPel.

Let p € &, p < m + q. We compute the first powers of p: p,p?,--- ,p* with
p* > m + ¢. If one of them is in L, the condition is true for this p. Else, we can
then calculate modulo ¢: p**1 ... pk*¢ (mod g), since the following elements
will not generate any new values modulo ¢. If one of them is in P (mod q), the
condition is true for p, else the condition is false (and LN is not rational).
For the recursive calls, we define the strict order < on the (finite) sets of

integers, by induction: VA,BCN, A, B # 0,

0<B

min(A4) < min(B), or
4<B & {min(A) — min(B), and A\ min(A) < B\ min(B) .

This is the lexicographical order over the “characteristic words” from {0,1}* of
A and B. The order < is total.

We will prove that I) U P, < I U P, when u € U. Let y be the smallest of
the z € TU P such that u | z, there exists one because L!, # L. By construction,
Ve e IUP, z <y = u t z, we find z also (identically) in I} U P/, and it
does not “generate” any other element in I}, U P). On the other side y generates
y/u € I, U P}, and of course y/u < y, so I, UP, < I UP.

The integers m and g remain the same in each recursive call, and for fixed m
and ¢, there is only a finite number (2™+9) of possible sets IUP C [0,m +¢). So
the order <, restricted to these sets, is finite. It follows that the computation of
the algorithm for a given L, i.e., (¢,m, I, P), needs only (recursively) the com-
putation of finitely many (g, m,I', P'), which prove the termination. B



Example 10 Considering L = 3N = {0,3,6,---}, one has LN = 3NN = 3N,
so LN € Rat(N). One can represent L by (3,0,0,{0}) and the algorithm would
answer “rational” after a recursive call: Ly = N. With the other representation
(6,2,{0},{3,6}) = (¢,m,I,P), i.e., L={0}U({3,6} +6N), one sees that u = 2
satisfies u € P and u | q, moreover Iz € P,u | z, but L), = L. Essentially
because @ = % = 3N. That is the reason why the condition L., # L is
necessary for the termination.

To speed up the algorithm, it might be possible to factorize L by lem(TUPU{q}):
the greatest common divisor of (all) the elements of I U P U {q}. One can also
try to minimize the period ¢ and the basis m.

As an application of the algorithm we can conclude that very often the power
of rational languages is not rational. For example

Va,be N, (a+bN)N € Rat(N) & a|borbd|a.

After some reductions of the languages through point 4 of the algorithm that
can be done directly by a factorization with gcd(a,b), one obtains a',b' €
N,ged(a’,b") = 1. The cases o’ or b’ € {0,1}, corresponding to a | bor b | a
are easy. Otherwise, if b’ = 2, then o’ > 3 and a' is odd, we conclude unrational-
ity with point 3 and Vk > 0,2% & (a’ + b'N). If b’ > 2, point 2 shows that the
language is unrational.

4 Conclusion

We have given an algorithmically solution to the question enunciated in Section
2:

given M € Rat(N), is MN rational?

Depending on the presence of relatively prime numbers in M, our algorithm
either states directly that M is not rational using Dirichlet’s theorem, or it
considers the representation of all prime numbers in M, or it decomposes M into
“smaller” languages by intersection with simple periodic sets and use recursivity.
It was necessary to use some facts of arithmetic. The runtime is mainly influenced
by the bound 2™%¢ for the number of recursive calls; we do not give here a precise
computation of the time complexity.

As future work, one could try to extend the result of Theorem 7 to any
product of two rational languages of integers (or even not necessarily rational).
It is easy to remark that if LN ¢ Rat(N) then V¢ > 0, L(t + N) ¢ Rat(N), but
the converse proposition is false: (2+ N)(2 +N) = (4 +N) \ & ¢ Rat(N). In
another direction, one can try to answer the question: “is pow(L) rational?” for
any rational language L (over any finite alphabet). After that, the most general
question would be: given a finite alphabet A, two languages L € Rat(A*) and
M € Rat(N),

is LM = {u* € A* | u € L,k € M} rational?

10
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