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Abstract

Languages of infinite two-dimensional words (infinite ω-pictures)
are studied in the automata theoretic setting of tiling systems. We
show that a hierarchy of acceptance conditions as known from the
theory of ω-languages can be established also over pictures. Since
the usual pumping arguments fail, new proof techniques are neces-
sary. Finally, we show that (unlike the case of ω-languages) none
of the considered acceptance conditions leads to a class of infinitary
picture languages which is closed under complementation.

1 Introduction

In the theory of automata over infinite words, many types of acceptance
conditions have been studied, such as Büchi and Muller acceptance. In
the framework of nondeterministic automata, three kinds of acceptance
conditions have been singled out to which all other standard conditions
can be reduced [11, 9, 2]: Referring to a nondeterministic automaton A,
an ω-word α is

1. A-accepted if some complete run of A on α exists,

2. E-accepted if some complete run of A on α exists, reaching a state
in a given set F of final states,

3. Büchi-accepted if some complete run of A on α exists, reaching
infinitely often a state in a given set F of final states.

It is well-known that these acceptance conditions lead to a strict hierarchy
of three classes of ω-languages in the listed order.



The purpose of the present paper is to study these acceptance condi-
tions over two-dimensional infinite words, i.e. labeled ω-grids or “infinite
pictures”. We use a model of “nondeterministic automaton” which was
introduced under the name “tiling system” in [4] (see also the survey [3]).
While the notion of run of a tiling system on a given infinite picture is nat-
ural, there are several versions of using the above acceptance conditions;
for example one may refer to the occurrence of states on arbitrary picture
positions, or one only considers the diagonal positions. As a preparatory
step, we give a reduction to the latter case and thus use only the diagonal
positions for visits of final states.

The first main result says that over infinite pictures we obtain the
same hierarchy of languages as mentioned above for ω-languages. Whereas
in the case of ω-words one can use simple state repetition arguments
for the separation proofs, we need different arguments here, combining
König’s Lemma with certain boundedness conditions.

In the second part of the paper we show that the class of Büchi recog-
nizable infinitary picture languages is not closed under complementation.
We use a recursion theoretic result on infinitely branching infinite trees,
namely that such trees with only finite branches constitute a set which is
not in the Borel class Σ1

1. From this we easily obtain a picture language
that is not Σ1

1 and thus not Büchi recognizable: One uses pictures which
consist of a code of an infinitely branching finite-branch tree in the first
row and otherwise contain dummy symbols. The hard part of the non-
closure result on complementation is to show the Büchi recognizability of
pictures which code infinite-branch trees. For this, it is necessary to im-
plement precise comparisons between an infinity of segments of the first
row, using only finitely many states. It turns out that this is possible by
using the “work space” ω × ω.

This nonclosure proof should be compared with a corresponding result
of Kaminski and Pinter [6] where a kind of Büchi acceptance is used
over arbitrary acyclic graphs; in that case one has much more freedom
to construct counter-examples and thus does not obtain the nonclosure
result over pictures.

A related work on tiling problems over ω × ω appeared in [5]. There
“dominoes” are placed on the ω-picture in a non-overlapping tiling, the
information flow being realized by matching the colors of the domino
boundaries. This difference is not essential; however in [5] only the un-
labeled ω-picture is considered, and no picture languages are associated
with the domino systems.



2 Tiling systems over infinite pictures

2.1 Preliminaries

Let Σ be a finite alphabet and Σ̂ = Σ ] {#}. An ω-picture over Σ is
a function p : ω × ω → Σ̂ such that p(i, 0) = p(0, i) = # for all i ≥ 0
and p(i, j) ∈ Σ for i, j > 0. (So we use # 6∈ Σ as a border marking of
pictures.) Σω,ω is the set of all ω-pictures over Σ. An ω-picture language
L is a subset of Σω,ω.

We call the restriction p �{0,...,m}×{0,...n} to an initial segment of a
picture p an (m,n)-prefix picture or just a prefix of p. If n = m such a
prefix is called a square. A k-extension with Σ of an (m,n)-prefix p is an
(m + k, n + k)-prefix p′ such that p′ �{0,...,m}×{0,...n}= p and the vertices
of p′ outside p are labeled with Σ. Analogously we define an ω-extension
with Σ of p. We write p′ = p ·k Σ or p′ = p ·ω Σ if p′ is a k-extension,
respectively an ω-extension, of p by Σ.

We denote by Sv = {((i, j), (i+1, j)) | i, j ∈ ω} and Sh = {((i, j), (i, j+
1)) | i, j ∈ ω} the vertical, respectively horizontal successor relation on
ω2.

A path in a picture p is a sequence π = (v0, v1, v2, . . .) of vertices such
that (vi, vi+1) ∈ Sv ∪ Sh for all i ≥ 0. If v0 = (0, 0) we call π an initial
path, and if π = (v0, . . . vn) is finite we call π a path from v0 to vn. A
vertex v1 is beyond a vertex v0 (v1 > v0) if there is a path from v0 to v1.

The origin of a picture p is the vertex (0, 0), the only “corner” of p.
The diagonal of a picture p is the set of vertices Di(p) = {(i, i) | i ∈ ω}.

2.2 Tiling systems

A tiling system is a tuple A = (Q,Σ,∆,Acc) consisting of a finite set Q
of states, a finite alphabet Σ, a finite set ∆ ⊆ (Σ̂ × Q)4 of tiles, and an
acceptance component Acc (which may be a subset of Q or of 2Q).

Tiles will be denoted by
( a1,q1 a2,q2
a3,q3 a4,q4

)
with ai ∈ Σ̂ and qi ∈ Q, and

in general, over an alphabet Γ, by
( γ1 γ2
γ3 γ4

)
with γi ∈ Γ. To indicate a

combination of tiles we write
( γ1 γ2
γ3 γ4

)
◦
( γ′1 γ′2
γ′3 γ

′
4

)
for
( (γ1,γ′1) (γ2,γ′2)

(γ3,γ′3) (γ4,γ′4)

)
.

A run of a tiling systemA = (Q,Σ,∆,Acc) on a picture p is a mapping
ρ : ω2 → Q such that for all i, j ∈ ω with p(i, j) = ai,j and ρ(i, j) = qi,j
we have

( ai,j ai,j+1
ai+1,j ai+1,j+1

)
◦
( qi,j qi,j+1
qi+1,j qi+1,j+1

)
∈ ∆. One can view a run of A

on p as an additional labeling of p with states from Q such that every
2× 2 segment of the thus labeled picture is a tile in ∆.



2.3 Acceptance conditions

We consider different acceptance conditions for tiling systems, all of them
similar to the well known ones from ω-automata over words. First con-
sider the case where the acceptance component is a set F ⊆ Q of states.
A tiling system A = (Q,Σ,∆, F )

• A-accepts p if there is a run ρ of A on p such that ρ(v) ∈ F for all
v ∈ ω2,

• E-accepts p if there is a run ρ of A on p such that ρ(v) ∈ F for at
least one v ∈ ω2,

• Büchi-accepts p if there is a run ρ of A on p such that ρ(v) ∈ F for
infinitely many v ∈ ω2,

• co-Büchi-accepts p if there is a run ρ of A on p such that ρ(v) ∈ F
for all but finitely many v ∈ ω2.

There are other natural acceptance conditions referring to an accep-
tance component Acc which is a set F ⊆ 2Q. We denote by Oc(ρ) the set
of states occurring in ρ, and by In(ρ) the set of states occurring infinitely
often in ρ. A tiling system A Staiger-Wagner-accepts (Muller-accepts) a
picture p if Oc(ρ) ∈ F (In(ρ) ∈ F) for some run ρ of A on p.

For any acceptance condition C, we say that a picture language L is
C-recognizable if some tiling system A C-accepts precisely the pictures in
L.

In the conditions above we consider a run on the whole picture and
therefore call them global acceptance conditions. To emphasize this, we
speak of picture languages which are globally A-recognizable, globally E-
recognizable, etc. However, for our proofs it is convenient to look at more
restricted conditions.

A tiling system A = (Q,Σ,∆, F ) accepts a picture p with an A-
condition on the diagonal if there is a run ρ of A on p such that ρ(v) ∈ F
for all v ∈ Di(p). Similarly we can define diagonal versions of all other
acceptance conditions above by replacing v ∈ ω2 by v ∈ Di(p).

Theorem 1 For every acceptance condition C from above, an ω-picture
language L is globally recognizable with condition C if, and only if, L is
recognizable with C on the diagonal. 2

The proof of this Theorem uses, independent of the acceptance con-
dition, a powerset construction where at vertex (i, i) on the diagonal all



states occuring at positions (i, j) and (j, i) for j ≤ i are collected. Due to
space restrictions we have to skip the details here.

Using the same idea, we can reprove the standard simulation results
for nondeterministic ω-automata over pictures, namely that nondetermin-
istic Muller recognizability reduces to nondeterministic Büchi recogniz-
ability, and that nondeterministic co-Büchi and Staiger-Wagner recogniz-
ability reduces to E-recognizability.

Again, using a classical (product-) construction, we obtain:

Proposition 2 For every acceptance condition C from above, the class of
C-recognizable picture languages is closed under union and intersection.

2

An alternative proof uses the results of the following subsection.

2.4 Monadic definability

Similarly as for ω-words and for finite pictures one verifies that every
Büchi recognizable picture language can be defined by a by an existential
monadic second order sentence (a Σ1

1-formula). Here we view pictures p
as relational structures over the signature {Sv, Sh,≤v,≤h, (Pa)a∈Σ} with
universe ω2, where Sv, Sh are are interpreted as the usual vertical and
horizontal successor relations, and ≤v and ≤h as the corresponding linear
orderings. We write u < v if v is beyond u. Pav holds for a vertex v ∈ ω2

iff p(v) = a.

Proposition 3 Let A = (Q,Σ,∆, Acc) be a tiling system. The picture
language recognized by A with any of the acceptance conditions of Section
2.3 can be defined by an existential monadic second order sentence ϕ.

Proof : The desired Σ1
1-sentence ϕ describes (over any given picture p)

that there is a successful run of A on p. For the details we refer only to
Büchi acceptance, the other cases are easy variations.

Let Q := {1, . . . , k}. We code states assigned to the p-vertices by
disjoint subsets Q1, . . . , Qk of ω2, Qi containing the vertices where state
i is assumed. The formula has to assure that the states are distributed
in the picture according to the transition relation ∆. Furthermore we
have to express that a state from F is assumed infinitely often. This can
be done by expressing that there is an infinite sequence of vertices which
strictly increases with respect to ≤ and which are labeled with the same
state from F .



The following sentence ϕ describes the existence of a successful run
of A on p:

∃Q1 . . . Qk∃R ∀x
∨

1≤i≤k

(
Qix ∧

∧
j 6=i
¬Qjx

)
(1)

∧ ∀x1 . . . x4

(
Shx1x2 ∧ Shx3x4 ∧ Svx2x3 ∧ Svx3x4 →∨(
a1,q1 a2,q2
a3,q3 a4,q4

)
∈∆

∧
1≤i≤4

Paixi ∧Qqixi
)

(2)

∧
∨
i∈F
∀x
(
Rx→ Qix

)
∧ ∀x ∈ R ∃y ∈ R ∃z

(
¬z = x ∧ x ≤h z ∧ z ≤v y

) (3)

2

3 Hierarchy results

Let us start with some natural examples of picture languages: Over the
alphabet {a, b}, define

• L0 = {b}ω,ω as the set of pictures carrying solely label b,

• L1 as the set of all pictures containing at least one a,

• L2 as the set of all pictures containing a infinitely often.

It is clear that L0 is A-recognizable (by a tiling system which allows
to cover only b-labeled vertices), that L1 is E-recognizable (by a tiling
system that visits a final state precisely at the a-labeled vertices), and
that L2 is Büchi recognizable (by the same tiling system applied with the
Büchi condition). Let us show that L1 is not A-recognizable and L2 not
Büchi recognizable:

Theorem 4 (a) L1 is not A-recognizable.

(b) L2 is not E-recognizable.

Proof : (a): Assume that A = (Q,Σ,∆, F ) A-recognizes L1. Consider
the pictures pi consisting of an (i, i)-prefix labeled b, and a everywhere
else. Each pi is A-accepted by A. Let ρi be the partial accepting run on
the (i, i)-prefix of pi.



For the partial runs of A on the b-labeled (i, i)-prefixes we use the
extension relation: ρ′ on the b-labeled (j, j)-prefix extends ρ on the b-
labeled (i, i)-prefix if j > i and the restriction of ρ′ to the (i, i)-square is
ρ.

Via the extension relation, the partial runs ρ are arranged in a finitely
branching tree, where the empty run represents the root and on level i all
possible runs on the b-labeled (i, i)-square are collected. (Note that for
each such run on level i there are only finitely many possible extensions
on level i+ 1.)

By assumption the tree is infinite (use the runs ρi from above). So by
König’s Lemma there is an infinite path. It determines a run of A on the
infinite picture which is labeled b everywhere. Contradiction.

(b): Assume A = (Q,Σ,∆, F ) E-recognizes L2. Two cases must be
considered:
Case 1: There is a square prefix p allowing a run ρ of A with final state
visited on p, and p can be extended to infinitely many square prefixes
p′ which beyond p are labeled solely with b such that ρ can be extended
to a run ρ′ on p′. Then, by König’s Lemma, A E-accepts the picture
consisting of p and b-labeled vertices everywhere else, contradicting our
assumption.
Case 2: For any square prefix p allowing a run ρ of A with final state
on p, there exist only finitely many extensions of p solely by b-labeled
vertices to square prefixes p′, such that ρ can be extended to a run ρ′ on
p′.

Let us consider one such square prefix p0. For every possible run ρ
with final state on p0, let pρ0 be the largest possible square extension of
p0 only with b, such that ρ can be extended to a run ρ′ on pρ0.

Choose p′0 as the largest of all pρ0 and let p1 be the extension of p′0 to
a larger square in which extra columns and rows are added: first a row
and column labeled b, then a row and column labeled a. (Note that a run
assuming a final state on p0 cannot be extended to any run on p1.)

We repeat this this procedure with p1. If there is no run with final
state on p1, we can directly set p2 as the extension to the next larger
square with an extra column and row of a-labeled vertices; otherwise, we
apply the above mentioned construction to obtain p2.

By iteration, we get a sequence p0, p1, p2, . . . of square prefixes such
that

• pi+1 is a square extension of pi containing a’s in the last column
and row,



• there is no run of A on pi+1 with final state on pi.

In the limit (the unique common extension of all pi) we obtain an
ω-picture p with infinitely many occurrences of a which does not admit a
run with an occurrence of a final state. Contradiction. 2

It is instructive to compare the proofs above with the corresponding
arguments over ω-words. Regarding the set of ω-words over {a, b} with
at least one letter a, one refutes A-recognizability as follows: Assume
an ω-automaton A with n states A-recognizes the language. Then it
accepts bnabω and assumes a loop before the a (note that up to a already
n+ 1 states are visited), allowing also to accept bω. A similar repetition
argument applies to the set of ω-words with infinitely many a’s. If it is
E-recognized by A with n states, then it will accept (bna)ω by a visit to a
final state after a prefix (bna)ibn; and again via a loop in the last b-segment
it will also accept (bna)ibω. Over pictures these simple constructions of
runs from loops cannot be copied.

The situation for deterministic tiling systems is much easier. We
mention these systems here only shortly. A tiling system is called deter-
ministic if on any picture it allows at most one tile covering the origin,
the state assigned to position (i+ 1, j + 1) is uniquely determined by the
states at positions (i, j), (i+ 1, j), (j + 1, i), and the states at the border
positions (0, i+1) and (j+1, 0) are determined by the state (0, i), respec-
tively (j, 0). The classical Landweber hierachy (see [7, 10]) of ω-languages
is defined using deterministic ω-automata with the acceptance conditions
from Section 2.3. The hierachy proofs carry over without essential change
to pictures, so we do not enter the details for deterministic tiling systems.

4 The complementation problem

It is easy (following the pattern of the well-known proofs over ω-words)
to verify that the classes of A-recognizable and of E-recognizable picture
languages are not closed under complement. Over ω-words, the Büchi
recognizable languages are closed under complement. We show here that
this result fails over pictures. For this purpose we use a well-known result
of recursion theory, namely that the codes of finite-path trees form a set
which is not Σ1

1.
The ω-trees considered in this context are (possibly) infinitely branch-

ing. For technical purposes it is convenient to work with a coding of trees
where the nodes are represented by nonempty sequences of positive inte-
gers, the sequence (1) representing the root, and a sequence (1, i2 . . . , ik)



representing a node on level k − 1. We do not require that the sons
(1, i2, . . . , ik, j) of a node (1, i2, . . . , ik) have j-values which form an ini-
tial segment of the positive integers. So we identify an ω-tree with a
nonempty prefix-closed set of sequences (1, i2, . . . , ik) with positive in-
tegers ij . An ω-tree is called finite-path if all paths from the root are
finite.

In a natural way, we use a unary coding (over the alphabet {1}) of
numbers and code an ω-tree t by an ω-word over {1, $}, taking $ as a
separation marker. A node (i1, i2, . . . , ik) is encoded as the finite word
1i1$1i2$ . . . $1ik$$. The tree t itself is encoded by a concatenation of the
encodings of all its nodes, with the restriction that the encoding of any
given node must be preceded by the encoding of its father. In addition,
we begin the whole encoding with an extra $$. Finite trees are encoded
by ω-words by repeating the encoding of a node infinitely often.

Let T1 be the set of ω-pictures over the alphabet {0, 1, $} which con-
tain a code of an ω-tree in the first row and are labeled with 0 on the
remaining positions. Let T2 be the subset of T1 of those pictures where
the coded tree contains an infinite path.

Theorem 5 The class of Büchi recognizable ω-picture languages is not
closed under complement. In particular T2 ⊆ {0, 1, $}ω,ω is Büchi recog-
nizable, but its complement is not.

Proof : We use a standard result of recursion theory (see, e.g. [8, Sect.
16.3, Thm. XX]), saying that the set FT of finite-path trees is Π1

1-
complete. Thus it is not Σ1

1-definable in second-order arithmetic. This
implies in particular that the ω-picture language T1 \ T2 containing the
corresponding tree codes is not definable by a monadic Σ1

1-sentence as
introduced in Section 2.3., and hence by Proposition 3 is not Büchi rec-
ognizable.

In the next Lemma we show that T1 and T2 are Büchi recognizable.
Assuming that this class of picture languages is closed under complement,
we get that {0, 1, $}ω,ω \ T2 is Büchi recognizable. Hence by Proposition
2 the set T1 \T2 of finite path trees, which is ({0, 1, $}ω,ω \T2)∩T1 would
be Büchi recognizable, too. 2

Lemma 6 (a) The language T1 ⊆ {0, 1, $}ω,ω of all pictures encoding an
ω-tree is Büchi recognizable.

(b) The language T2 ⊆ {0, 1, $}ω,ω of all pictures encoding an ω-tree with
an infinite path is Büchi recognizable.



Proof : The idea for a tiling system which will recognize T1 with Büchi-
condition is to check increasing prefixes of a tree-encoding for correctness.
An accepting run divides a picture into horizontal slices, one for every
node. On every slice we test whether the father of the corresponding
node, which will be guessed non-deterministically, has already been listed
before. The tiles will not allow a node to be skipped from this proce-
dure and the acceptance condition will require that these checks succeed
infinitely often.

Every state of the tiling system will consist of three components. Since
we will always have to know the encoding on the first line anywhere in the
picture, we spend the first state component for the vertical propagation
of this line.

The second and the third component of the states are used to check
whether the father of the current node was guessed correctly. An typical
accepting run checking 1$1111$$ and 1$1111$111$$ is sketched in Figure
1, where only the third component of a corresponding state is shown.
The correct beginning of an encoding including the root node has to be
checked separately using another set of states.

$ $ 1 $ 1 1 1 1 $ $ $ $ 1 $ 1 1 1 1 $ 1 1 1 $ $
0 0 0 0 0 0 0 0 1 2 2 2 2 2

3 4 5 6
3 4 5 6

x v y w z

3 4 5 6
7 7 8 9 9 6

0 0 0 0 0 0 0 1 2

Figure 1: Accepting tiling of father and son

Let us outline the behaviour of A and the interpretation of each state.
In the following we will use the term “labeling” for the third state com-
ponent only.

The starting point of each comparison is the line consisting of 0,1 and
2 only. State 1 marks the end of the tree node checked last, everything to
the left is labeled 0 (already checked), everything to the right is labeled
2 (to be checked).

In the next line we start the comparison of the node encoded just to
the right of the vertex labeled 1. Therefore four signals are used, two



diagonal ones from the beginning of the encoding of the father (state 3)
and of the son (state 5), and two vertical ones (4 and 6) marking the their
respective ends.

From every vertex (i, j) labeled 3 a signal to the right is initiated.
This signal forwards the first state component of the state at (i, j) to the
right using the second state component until it reaches a vertex (i, j+ k)
labeled 5. The first state component of (i, j+k) has to be the same as the
second state component of the arriving signal for the run to be continued.
This is the case only if vertices (1, j) and (1, j + k) are labeled with the
same symbol.

We mark the vertex where signals 3 and 4 meet by 7, which is for-
warded to the right to mark at its meeting point with signal 5 (labeled 8)
the end of the enconding of the father contained in the encoding of the
son. We use label 9 to check that henceforth only 1’s appear in the en-
coding of the son. Finally, the vertex below the one where signals 9 and 6
meet is labeled 1, indicating that the node whose encoding ends here has
been successfully verified. The labels x, v, y, w, z are used to distinguish
the vertices contained in the fields bordered by signals 0-9.

To accept the language T2 of ω-trees with an infinite path we modify
the tiling system above slightly. We add another two state components.
The first one is used to indicate (using state ∗) that the corresponding
node is the last one which has already been verified and which is on the
infinite path to be checked. The fifth component is used to forward this
mark to the right when we verify the encoding of the son of this node
on the infinte path. Once this son has been verified it becomes the only
node labeled ∗ in the fourth component for slices below the current one.

The tiling system will still ensure that there is a run on a picture p if,
and only if, p encodes an ω-tree. The acceptance condition now requires
that the consistency check for nodes whose father is labeled with ∗ in the
forth component succeeds infinitely often. 2

5 Conclusion

In this paper we have isolated those aspects of acceptance of ω-pictures by
tiling systems which differ from the theory of ω-languages. This concerns
the proofs (but not the results) in the comparison of acceptance condi-
tions. For the class of Büchi recognizable picture languages we showed
the non-closure under complementation.



Among the many questions raised by this research we mention the fol-
lowing: Find (or disprove the existence of) decision procedures which test
Büchi recognizable picture languages for E-, respectively A-recognizability.
Compare the tiling system acceptance with an acceptance of pictures row
by row using an automaton model over ordinal words of length ω2 (see
[1]). Finally, it would be nice to have elegant characterizations of the
A- and E-recognizable picture languages which do not use the obvious
restrictions in Part (3) of the formula in Proposition 3.
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